Title: How far from equilibrium? Structure and dynamics of a uniformly heated granular fluid.

Author (Invited): Pedro Reis, MIT

Abstract:

We have developed an experimental system to study Non-equilibrium steady states in a quasi-2D granular fluid in which energy is injected uniformly across the cell. Using a number of classic measures commonly used in statistical mechanics (Lindemann criterion, radial distribution function, bond-order orientation parameter, shape factor, intermediate scattering function, etc) we have shown that our system assumes equilibrium-like structural configurations. Moreover, we observe a fluid-to-crystal transition, as the filling fraction of the granular layer is increased, exactly at the point at which it occurs for equilibrium hard disks. Prior to crystallization, there is an intermediate region in which caging of particles is dominant with a relaxation timescale that follows a Vogel-Fulcher law, typical of many glassy systems. Despite this strong equilibrium-like behaviour, non-equilibrium features are observed, as expected, in the dynamics of the system as measured by deviations from Maxwellians of the probability distribution functions of velocities.

Valid HTML 4.01!

Copyright © All Rights Reserved.

Valid CSS!