Title: Onset and cessation of motion in fluid-sheared granular beds

Author (Talk): Abe Clark, Yale University

Abstract:

To understand grain-scale mechanisms that control the onset and cessation of sediment transport, we performed molecular dynamics simulations of granular beds driven by a fluid-like shear flow. We find a critical value for the Shields number (the nondimensional shear stress at the top of the granular bed) that separates flowing and static states, with a bed flow rate that is discontinuous at the critical value. The transition times between flowing and static states diverge as the system approaches the critical Shields number from above and below. Additionally we find that, for finite systems, the onset of flow occurs stochastically at supercritical Shields numbers. We show that the statistics of the Shields number at failure obey Weibullian weakest-link statistics, and that the onset of flow is caused by local grain rearrangements that give rise to additional rearrangements and then to continuous flow. Thus, the onset of motion is governed by the packing structure of the granular bed, even deep beneath the surface. Since the fluid dynamics is strongly coupled to the settling process and thus to the bed structure, this also suggests a strong feedback between the fluid dynamics and granular physics in bed mobilization.

Valid HTML 4.01!

Copyright © All Rights Reserved.

Valid CSS!