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ABSTRACT
Micro- and nanoresonators have important applications including sensing, navigation, and biochemical detection. Their performance is
quantified using the quality factor Q, which gives the ratio of the energy stored to the energy dissipated per cycle. Metallic glasses are a
promising material class for micro- and nanoscale resonators since they are amorphous and can be fabricated precisely into complex shapes
on these length scales. To understand the intrinsic dissipation mechanisms that ultimately limit large Q-values in metallic glasses, we perform
molecular dynamics simulations to model metallic glass resonators subjected to bending vibrations at low temperatures. We calculate the
power spectrum of the kinetic energy, redistribution of energy from the fundamental mode of vibration, and Q vs the kinetic energy per atom
K of the excitation. In the harmonic and anharmonic response regimes where there are no atomic rearrangements, we find that Q→∞ over
the time periods we consider (since we do not consider coupling to the environment). We identify a characteristic Kr above which atomic
rearrangements occur, and there is significant energy leakage from the fundamental mode to higher frequencies, causing finite Q. Thus, Kr is
a critical parameter determining resonator performance. We show that Kr decreases as a power-law, Kr ∼ N−k, with increasing system size N,
where k ≈ 1.3. We estimate the critical strain ⟨γr⟩∼ 10−8 for micrometer-sized resonators below which atomic rearrangements do not occur
in the millikelvin temperature range, and thus, large Q-values can be obtained when they are operated below γr . We also find that Kr for
amorphous resonators is comparable to that for resonators with crystalline order.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5116895., s

I. INTRODUCTION

Micro- and nanoresonators have numerous important appli-
cations including navigation, sensing, chemical detection, molec-
ular separation, and biological imaging.1 The performance of res-
onators is typically measured by the quality factor, Q, which gives
the ratio of the energy stored to the energy dissipated per cycle
in the resonator during operation.2 Micro- and nanoresonators
made from nonmetallic crystalline materials, such as sapphire,3 car-
bon nanotubes,4,5 and single-crystal diamond,6 can possess qual-
ity factors Q > 106 at low temperatures. However, it is diffi-
cult to fabricate these materials into complex shapes, and many

applications require electrical conduction. As a result, crystalline
metals are used in many resonator applications, yet they suffer
from energy losses that arise from topological defects and grain
boundaries.7

In an effort to obviate energy losses from topological defects
and grain boundaries that occur in crystalline metals, as well as
take advantage of their plastic-forming ability to be fabricated
into complex shapes, several groups have considered resonators
made from metallic glasses (MGs).8–12 MGs are cooled rapidly
to avoid crystallization, and thus, they possess uniformly disor-
dered structure. Recent experiments have shown that metallic-glass-
based resonators can achieve quality factors that are comparable
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and even larger than those for resonators made from crystalline
metals.9,13,14 Metallic glasses offer the additional benefit for res-
onator applications in that they can be thermoplastically formed
into complex shapes with spatial features that span many orders of
magnitude.15–17

In this work, we analyze the mechanisms that give rise to dis-
sipation in model glasses, which will allow us to better understand
why metallic glass resonators possess finite quality factor at very
low temperatures. The mechanisms that give rise to energy losses
in resonators during vibration can be classified as intrinsic or extrin-
sic.1 Extrinsic losses, such as anchoring and frictional losses, come
from interactions between the resonator and its surrounding envi-
ronment.18,19 In contrast, intrinsic losses originate from flaws or
defects within the resonator, such as dislocations, grain bound-
aries, vacancies, and interstitials in crystalline materials. In metallic
glasses, which lack crystalline order, intrinsic losses are envisioned to
stem from irreversible, collective atomic rearrangements, or shear-
transformation zones (STZs).20 A number of studies have charac-
terized the role of collective atomic rearrangements in determining
the mechanical properties of metallic glasses, including ductility,
yielding, and shear-band formation.21–25

Internal friction measurements have been performed to gain
insight into intrinsic dissipation mechanisms and the quality fac-
tor of metallic glasses.7,26,27 However, a key focus in this work has
been on revealing structural relaxation processes at elevated tem-
peratures (i.e., near the glass transition temperature), rather than
their low-temperature behavior. In these studies, metallic glass sam-
ples are typically perturbed by mechanical or electrostatic excita-
tion using a torsion pendulum or dynamical mechanical analyzer,
and the internal friction is measured as a function of tempera-
ture, frequency, and strain amplitude.7,28,29 The internal friction,
which is proportional to Q−1, is generally small for temperatures
below room temperature and then increases dramatically, forming
a strong peak at temperatures typically above 400–500 K due to
collective α structural relaxations.8,30,31 Studies7 have also reported
a much smaller peak (typically four orders of magnitude smaller
than that corresponding to α relaxations) in the internal friction of
metallic glasses between 50 K and room temperature. Researchers
have suggested that this peak corresponds to localized, anelastic
so-called β relaxations. Explanations of the peaks in the internal
friction include the creation and destruction of free volume,32 dis-
location motion,33 shear transformation zones,20 shear bands, and
other mechanisms that involve structural rearrangements. At even
lower temperatures (<50 K), the internal friction has been described
using the quantum mechanical tunneling model for two-level
systems.34,35

Most of these prior studies of the vibrational properties of
metallic glasses either use a quantum mechanical approach for the
low-temperature behavior or consider temperatures near room tem-
perature and above, where thermal fluctuations are significant and
microscopic rearrangements of atoms are frequent. In this work,
we will take a different but still classical approach and focus on the
nearly zero-temperature regime, where even microscopic rearrange-
ments of atoms are rare, to better understand the transition from the
harmonic response regime where Q is infinite over the time periods
we consider (since we do not consider coupling of the system to the
environment) to the highly anharmonic regime where Q becomes
finite.

Our work is also related to studies of energy equipartition in
weakly nonlinear spring networks. In the original work of Fermi,
Pasta, and Ulam (FPU)36 and in the subsequent work that consid-
ered larger systems and longer time scales,37–40 the authors con-
sidered one-dimensional lattices of masses connected by nonlinear
springs and investigated the extent to which energy input into a sin-
gle or a few eigenmodes of the system can be transferred to other
modes during vibration and whether these weakly anharmonic sys-
tems can reach thermal equilibrium with equipartition of energy
among all of the eigenmodes. These studies have also been extended
to two-41,42 and three-dimensional systems with a variety of inter-
particle potentials.43–45 This body of prior work is similar to ours
in this sense that we input a single low-frequency eigenmode into
an anharmonic system and study the transfer of energy out of the
original eigenmode. However, there are key differences between this
body of work and our current studies. Most importantly, in the
systems we consider, the atoms have finite range interactions (that
become zero beyond a given interatomic separation specified by the
atom size) and thus, the atoms can rearrange and change neighbors.
To rearrange, the system must overcome a potential energy barrier,
which induces strong anharmonicities into the system. In contrast,
most prior studies of the approach to equipartition have focused on
systems in which the interactions enforce that the particles do not
rearrange. The potential energy landscape in such systems is much
smoother than that for systems in which the particles can rearrange.
Below, we will compare the vibrational response for anharmonic
systems that experience atomics rearrangements and those that
do not.

Here, we carry out molecular dynamics (MD) simulations to
quantify the intrinsic dissipation caused by atomic rearrangements
and measure the quality factor in model metallic glass resonators at
low temperatures. We induce vibrations in a thin bar-shaped res-
onator by exciting the mode corresponding to the resonator’s fun-
damental frequency with a given kinetic energy per atom K and
then running MD at constant total energy. When K is small, i.e.,
K < Knl, the resonator displays harmonic response, the spectrum
of the vibrational modes only includes the fundamental mode, and
Q → ∞ over the time period we consider. For intermediate K, i.e.,
Knl < K < Kr , energy leaks to modes other than the fundamen-
tal mode, but at sufficiently long times, the leakage stops. Thus, in
this regime, Q → ∞ at the longest times we consider. For K > Kr ,
the system undergoes one or more atomic rearrangements, which
induce strong dissipation and finite Q. Thus, the magnitude of Kr
controls the performance of metallic glass resonators. We further
show that Kr can be increased by decreasing the system size or by
decreasing the cooling rate used to prepare the resonator. We also
show that resonators with amorphous structure can achieve com-
parable performance (e.g., same Q) to those with partial crystalline
order.

The remainder of the article is organized as follows. In Sec. II,
we describe the simulation methods we use to prepare and excite
the metallic glass resonators and to quantify the energy loss and
quality factor of the vibrations. In Sec. III, we present the results,
including measurements of the intrinsic loss and dissipation aris-
ing from anharmonicity of the potential and atomic rearrangements,
techniques to increase Q by decreasing the system size and cool-
ing rate, and comparisons of resonator performance in amorphous
and crystalline samples. In Sec. IV, we summarize our findings and
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present promising directions for future research. We also include
four appendices. In Appendix A, we discuss the structure of the
low-frequency eigenmodes. In Appendix B, we show that our results
for the vibrational response do not depend strongly on the length
of the time series of the vibrations that we collect. In Appendix C,
we show the time dependence of the power spectrum of the kinetic
energy, which supports the findings presented in the main text. In
Appendix D, we compare the vibrational response for a thin-bar res-
onator with Lennard-Jones-like interactions and the response for a
thin-bar resonator composed of a nonlinear spring network where
atomic rearrangements are absent.

II. MODELS AND METHODS
We perform molecular dynamics (MD) simulations of binary

Lennard-Jones mixtures using the Kob-Andersen model,46 which
has been employed to describe NiP alloys. Spherical atoms interact
pairwise via the shifted-force version of the Lennard-Jones poten-
tial, u(rij) = 4εij[(σij/rij)12 − (σij/rij)6] with a cutoff distance of
rc = 2.5σij, where rij is the separation between atoms i and j. The total
potential energy per atom is U = N−1∑i>ju(rij). 80% of the atoms
are type A (NA/N = 0.8) and 20% are type B (NB/N = 0.2), where
N = NA + NB is the total number of atoms, and the energy and
length parameters are given by εAA = 1.0, εBB = 0.5, εAB = 1.5, σAA
= 1.0, σBB = 0.88, and σAB = 0.8. All atoms have the same mass m.

The energy, length, and pressure scales are given in terms of εAA,
σAA, and εAA/σ3

AA, respectively.
We initially placed the N atoms on an face-centered cubic (fcc)

lattice in a long, thin box with aspect ratio Lx:Ly:Lz = 6:1:2 and peri-
odic boundaries in the x-, y-, and z-directions at reduced number
density ρ = 1.0. We then equilibrated the system at high tempera-
ture T0 > Tg ∼ 0.447 (which melts the crystal) by running molecular
dynamics simulations at fixed number of atoms, pressure, and tem-
perature (NPT) using the Nosé-Hoover thermostat with tempera-
ture T0 = 0.6 and pressure P0 = 0.025, a modified velocity-Verlet
integration scheme, and time step Δt = 10−3. We then cool the sys-
tem into a glassy state at zero temperature using a linear cooling
ramp with time t such that T(t) = T0 − Rt. [The cooling rate is
measured in units of ε3/2

AA /(m
1/2σAA), where the Boltzmann constant

kB = 1.] We varied the cooling rate R over more than three orders of
magnitude, yet we ensured that R was larger than the critical cool-
ing rate Rc to avoid crystallization. The lowest cooling rates corre-
spond to ∼1010 K/s, which is several orders of magnitude higher than
the cooling rates that are typically achieved in experimental studies.
Thus, the glasses we consider in simulations are not as energetically
relaxed as those in experiments. However, the results concerning
the effects of atomic rearrangements on the vibrational response are
general and apply to samples generated over a wide range of cool-
ing rates. We vary N from 250 to 8000 atoms to assess the finite size
effects.

FIG. 1. (a) View of the model metal-
lic glass resonator along the z axis.
The bar contains N = 2000 atoms with
aspect ratio Lx :Ly :Lz = 6:1:2. Blue and
yellow atoms indicate A and B atom
types, respectively. (b) Vector field rep-
resenting the fundamental mode of the
dynamical matrix of the metallic glass
resonator in (a). The color scale high-
lights the y-component of the fundamen-
tal mode contribution for each atom with
red corresponding to positive and blue
corresponding to negative y-values.

FIG. 2. Schematic diagram that illustrates the method we use to calculate the loss L and quality factor Q of model metallic glass resonators. We track the velocities v of the
atoms in the resonator over a long time period. The time series is broken up into 20 time intervals with equal duration δt. We calculate the velocity autocorrelation function
(VACF) for each time interval and fast Fourier transform (FFT) it to measure the power spectrum of the kinetic energy (at time t) D(ω, t) and loss L(t) for each time interval t.
Using Eq. (3), we can calculate the quality factor Q from L(t).
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After cooling the system to zero temperature, we remove the
periodic boundary conditions in the x-, y-, and z-directions (creating
free surfaces) and then apply conjugate gradient energy minimiza-
tion to yield the zero-temperature configuration of the resonator,
R0 = {x1, y1, z1, . . ., xN , yN , zN} [see Fig. 1(a) and Appendix A
for visualizations of the eigenmodes for aspect ratios]. To induce
vibrations, we excite the fundamental mode, i.e., the lowest eigenfre-
quency ω1 of the dynamical matrix,48 evaluated at R0 [see Fig. 1(b)].
The elongated, thin shape of the resonator guarantees that the low-
est eigenfrequency is well-separated from higher ones. We then set
the initial velocities of the atoms such that v = {vx1, vy1, vz1, . . ., vxN ,
vyN , vzN} = δe1, where e1 is the eigenvector corresponding to ω1 and
δ =
√

2NK/m, and run MD simulations at constant total energy for
a given time t = ω1t/2π. (The eigenvectors are normalized such that
ei ⋅ ej = δij, where δij is the Kronecker delta and i, j = 1, . . ., 3N − 6
are the indexes of the eigenvectors that correspond to the nontrivial
eigenfrequencies.)

We track the atom positions and velocities over long time peri-
ods t > 2700 during the MD simulations. We then divide the long
time series into 20 time intervals with equal duration δt = 135.
We characterize the vibrational response of the system using two
methods. In the first, we determine the vibrational response using
the time period from 0 to δt. For the second method, we quantify
how the vibrational response varies in time following the initial per-
turbation using a fixed tape length δt for each time interval. (We
show that our results do not depend strongly on tape length δt in
Appendix B.)

For each time interval between t to t + δt, we calculate
the Fourier transform of the velocity autocorrelation function to
determine the power spectrum of the kinetic energy (at time t)
D(ω, t),49

D(ω, t) = ∫
δt

0
⟨v(t0 + τ) ⋅ v(t0)⟩teiωτdτ, (1)

where ω is the angular frequency and ⟨⋅⟩t indicates an average over
all atoms and time origins t0 between t and t + δt. See Fig. 2 for a
summary of this approach.

For each time interval, we also determine the fraction of the
kinetic energy that has transferred from the fundamental mode (with
frequency ω1) to other frequencies by defining the loss,

L(t) = 1 − ∫
ω1+Δω
ω1−Δω D(ω, t)dω
∫ ∞0 D(ω, t)dω , (2)

where Δω = (ω2 − ω1)/2 [see Fig. 3(b)]. By determining the loss
L(t) over consecutive time intervals, we can calculate the quality
factor

FIG. 3. (a) The power spectrum of the kinetic energy D(ω, 0) for the time interval
t = 0 as a function of the kinetic energy per atom K. (b) D(ω, 0) for the same
systems in (a), but a close-up of the low frequency regime. The vertical dashed
lines indicate the vibrational frequencies (ω1, ω2, . . ., ω3N−6) calculated from the
dynamical matrix. The arrows indicate integer multiples of the fundamental fre-
quency ω1, and the two vertical solid lines show the region of frequencies near ω1
used in Eq. (2) to calculate the loss.

Q = ω1(
dL(t)
dt
)
−1

. (3)

Note that the results do not depend strongly on the magnitude of Δω
as long as it brackets ω1.

To track the atomic displacements during vibration, we will
also calculate the root-mean-square deviation (RMSD) between two
configurations, e.g., R(t1) and R(t2) at different times t1 and t2,

d(R(t1),R(t2)) =
¿
ÁÁÀN−1

N

∑
i=1
(xi(t1) − xi(t2))2 + (yi(t1) − yi(t2))2 + (zi(t1) − zi(t2))2, (4)

where the sum is over all atoms.
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III. RESULTS
The results are organized into three sections. In Sec. III A, we

quantify the power spectrum of the kinetic energy D(ω, 0) and loss
L(0) during the first time interval (t = 0) as a function of the initial
kinetic energy per atom K and investigate the effects of atomic rear-
rangements on the vibrational response. We also study the depen-
dence of D(ω, t) and L(t) on the time interval t and calculate the
quality factor Q. We identify three characteristic regimes for vibra-
tional response as a function of K: the harmonic response regime,
where there is no leakage of energy from the fundamental mode to
others, the anharmonic regime, where energy leakage occurs at short
times, but it stops at long times, and the strong loss regime where
atomic rearrangements occur, causing large losses and small Q. In
Sec. III B, we investigate how variations of the system size N and
cooling rate R affect the frequency of atomic rearrangements and
thus the vibrational response. In Sec. III C, we calculate the loss in
resonators made from polycrystalline and defected crystalline mate-
rials and compare it to resonators made from amorphous materials.
We find that the losses generated from resonators with amorphous
structure are comparable to that for crystalline resonators, which
suggests that glassy materials may be promising for high-Q resonator
applications.

A. Intrinsic dissipation: Anharmonicity
and atomic rearrangements

We first focus on model metallic glass resonators with N = 2000
generated using cooling rate R = 10−2. In Fig. 3, we show the power
spectrum of the kinetic energy D(ω, 0) during the first time inter-
val t = 0 after exciting the system along the fundamental mode as
a function of the kinetic energy per atom over six orders of magni-
tude from K = 5 × 10−10 to 5 × 10−4. When K is small, most of the
response remains in the fundamental mode, ω1, indicating that the
system is in the harmonic response regime. As K increases, energy
begins to leak to other modes of the dynamical matrix [indicated by
the dashed vertical lines in Fig. 3(b)], as well as harmonics of the fun-
damental mode [indicated by the arrows in Fig. 3(b)]. The leakage
of energy from the fundamental mode is due to the anharmonic-
ity of the Lennard-Jones potential near the minimum and not due
to the cutoff at rc = 2.5σij.50 To test this, we also carried out stud-
ies of anharmonic spring networks with rc → ∞ and found similar
results.

In Fig. 3, we show that there is a qualitative change in the vibra-
tional response when K increases from 5 × 10−6 to 5 × 10−5. At
the higher value of K, the vibrational response is noisy and energy
is redistributed over a much wider range of frequencies than at the
lower value of K. A more refined search shows that this qualitative
change occurs in the kinetic energy interval 5 × 10−5.50 < Kr < 5
× 10−5.49, as shown in Fig. 4(a).

We now investigate the cause for the qualitative change in the
vibrational response for K > Kr . To do this, for each fluctuating
configuration R(t), we calculate the corresponding inherent struc-
ture or the configuration of the nearest local potential minimum
R0(t), using conjugate gradient energy minimization. A schematic
illustrating the potential energy landscape is shown in Fig. 4(b). In
Fig. 4(c), we plot the difference in the potential energy per atom
ΔU(R0(t), R0(0)) = U(R0(t)) − U(R0(0)) as a function of time for

FIG. 4. (a) Power spectrum of the kinetic energy D(ω, 0) (during the first
time interval t = 0) for K = 5 × 10−5.50 (blue) and 5 × 10−5.49 (red). (b)
Schematic diagram of the energy landscape with axes, the total energy per atom
E = U + K, and atomic configuration R. The configurations R0(t1) and R0(t2) rep-
resent the inherent structures (i.e., the nearest local potential energy minima) of
the vibrating system at times t1 and t2, respectively. ΔU is the difference in the
potential energy per atom, and U∗ is the energy barrier between the configura-
tions R0(t1) and R0(t2). (c) ΔU(R0(t), R0(0)) between the inherent structures at
times t and 0 for K = 5 × 10−5.50 (blue circles) and 5 × 10−5.49 (red pluses). The
inset shows the root-mean-square deviation (RMSD) d(R0(t), R0(0)) between the
inherent structures at times t and 0.

K < Kr and K > Kr . When K < Kr , ΔU ∼ 10−14 for all times, indi-
cating that the system remains in the basin of the inherent structure
at t = 0. For K > Kr , ΔU jumps from ∼10−14 to ∼10−3 near t∗ ∼ 80,
indicating that the system transitions from the basin of the inher-
ent structure at t = 0 to that of a different inherent structure at t∗

following an atomic rearrangement. We also used Eq. (4) to calcu-
late the root-mean-square deviation between the inherent structures
R0(0) and R0(t) at times 0 and t during the vibrations. In the inset
of Fig. 4(c), we show that ΔU and d display similar behavior. For
K < Kr , d ∼ 10−6 for all times. For K > Kr , near t∗ ∼ 80, d jumps
from ∼10−6 to ∼10−2, again indicating that an atomic rearrange-
ment occurs at t∗. One can also see that subsequent rearrangements
occur at later times, which are indicated by jumps in ΔU and d.
These results emphasize that atomic rearrangements induce signif-
icant redistribution of energy from the fundamental mode to other
frequencies.

We quantify the leakage of energy from the fundamental mode
to other frequencies over the first time interval t = 0 by calculat-
ing the loss L(0) [defined in Eq. (2)] as a function of K in Fig. 5.
We calibrate the measurement of the loss by studying perfect cosine
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FIG. 5. Loss L(0) [Eq. (2)] for the first time interval t = 0 vs the initial kinetic energy
per atom K. The solid vertical line indicates K r ≈ 5 × 10−5.49 at which the first
atomic rearrangement occurs. The dashed horizontal line indicates the loss thresh-
old Ll for a harmonic oscillator with a measurement time δt that deviates from an
integer.

oscillations of the velocity of a single atom over a tape length of δt.
Since in general δt is not an exact integer multiple of the oscilla-
tion period, the loss Ll ∼ 10−4.5 we measured for a cosine wave is
small but nonzero. We find that the lower threshold for the loss
Ll does not affect the results we present. In Fig. 5, we show that
at small K, L(0) ∼ Ll and L(0) increases smoothly with increasing
K until reaching 0.04 near Kr . At Kr , the loss jumps to L(0) ∼ 1,
indicating the onset of atomic rearrangements, and remains there
for K > Kr .

In Fig. 5, we showed the loss for only the first time interval
t = 0. We characterize the time-dependent loss in Fig. 6(a). [We also
include the variation of the power spectrum of the kinetic energy
D(ω, t) with time t in Appendix C.] We identify three distinct
regimes. First, when K < Knl, with Knl ≈ 1.15 × 10−5, the loss L(t)
is small and does not increase with t, and thus, Q→∞ over the time
period we consider. In the second regime, for intermediate Knl < K
< Kr [such as K = 1.20 × 10−5 in Fig. 6(a)], L(t) initially increases
with t smoothly, generating a finite Q, but then, L(t) reaches a
plateau and Q → ∞ at the longest times we consider. In the third
regime, for K > Kr [such as K = 1.26 × 10−5 in Fig. 6(a)], L(t)
increases with t smoothly (indicating finite Q), until an atomic rear-
rangement event occurs and L(t) jumps to a large value L ∼ 1. L(t)
continues to increase after the first atomic rearrangement.

We evaluate Q(0) for the first time interval t = 0 using Eq. (3)
and show the results as a function of K in Fig. 6(b). We find
that Q(0) ∼ 2 × 104 for K ∼ 1.5 × 10−5 and Q(0) increases with
decreasing K. For K ≲ Kr , Q begins to increase sharply, diverging as
K → Knl, indicating the behavior for a perfect harmonic resonator
for K < Knl. We also find that Q(0) vs K − Kr is similar for sam-
ples with different initial configurations. These results indicate that
to design a high-Q metallic glass resonator, one needs to fabricate
a system with a large value for Kr and operate the resonator at
K < Kr .

To understand the nature of oscillations in metallic glass res-
onators [e.g., U(t) in Figs. 7(a) and 7(c)], we calculate the point

FIG. 6. (a) Loss L(t) vs the time interval t for kinetic energy per atom K = 9.98
× 10−6 (blue circles), 1.20 × 10−5 (orange squares), and 1.26 × 10−5 (red trian-
gles). (b) Quality factor Q(0) for the first time interval t = 0 as a function of K. The
dashed vertical line indicates Knl ≈ 1.15 × 10−5 at which Q(0)→∞ over the time
period we consider. The vertical dotted line indicates K r ≈ 1.26 × 10−5, above
which atomic rearrangements occur.

RMSD dpoint(t) and path RMSD dpath(t) in Figs. 7(b) and 7(d).
dpoint(t) quantifies the deviations in the configurations that are the
closest to the potential energy minimum in each half cycle, and
dpath(t) quantifies the deviations in the configurations at correspond-
ing times before and after the turning point of the oscillation during
each half cycle.

When K < Knl (regime 1), the system is in the harmonic
response regime, the path in configuration space followed by the
resonator is nearly parabolic, as shown in Fig. 7(e), and both dpoint
and dpath ∼ 0. When the system enters the anharmonic regime, Knl
< K < Kr (regime 2), dpoint and dpath [as well as the loss L(t) in
Fig. 6(a)] increase with t until t∗ ≈ 790. For t > t∗, dpoint, dpath,
and L(t) reach plateaus and then remain nearly constant in time.
This behavior indicates that the resonator is undergoing anharmonic
oscillations, in which the system does not retrace the same configu-
rations above and below the turning point for each half cycle, but
the system is nearly reversible [see Fig. 7(f)]. In the third regime
K > Kr , the probability for an atomic rearrangement increases
strongly. In this regime, the system can traverse the saddle points,
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FIG. 7. (a) and (c) Total potential energy per atom U as a function of time from 0
to nδt, where n = 20. The times t− and t+ indicate successive times at which U
is at a minimum during each half cycle of the vibrations. The horizontal solid line
in (a), connecting the times t− and t+, indicates the times for each half cycle at
which the RMSD, dpoint(R(t−), R(t+)), is calculated in panel (b). In (b), we show
dpoint for K = 9.98 × 10−6 in the regime K < Knl (blue), K = 1.20 × 10−5 in the
regime Knl < K < K r (orange), and K = 1.26 × 10−5 in the regime K > K r (red).
The horizontal solid lines in (c) indicate the times ti and tj = t+ + t− − ti during
each half cycle that are used to calculate the RMSD, dpath = ⟨d(R(ti), R(tj))⟩ti ,
where the angle brackets indicate an average over the 1/2Δt ∼ 300 uniformly
spaced times ti . dpath in panel (d) is shown for the same values of K as in (b).
(e)–(g) Schematic diagram that shows the system trajectories (solid black lines)
in the potential energy landscape [shaded contours from high (orange) to low
(blue) energies] for the three regimes of oscillations (1: K < Knl , 2: Knl < K
< K r , and 3: K > K r ). The red solid line indicates the probability of an atomic
rearrangement vs K.

can enter the basins corresponding to new potential energy min-
ima, and is thus microscopically irreversible. The three regimes
describing resonator oscillations are summarized in Figs. 7(e)–7(g).
Note that it is possible that the quality factor Q in regimes 1
and 2 is not strictly infinite but instead just extremely large and

possibly time-dependent.36 This issue will be discussed further in
Appendix D.

B. Methods to increase K r and enhance Q
In Sec. III A, we showed that even single atomic rearrange-

ments give rise to significant loss and finite values of Q. Thus, to
generate high-Q resonators, one must maximize ⟨Kr⟩ ∼ ⟨U∗⟩, yield-
ing systems with large potential energy barriers. In this section, we
describe studies of the ensemble-averaged ⟨Kr⟩ vs system size N and
cooling rate R, averaged over typically 20 independently generated
initial conditions. For each R and N, we excite the resonator along
the fundamental mode corresponding to the lowest eigenvalue of the
dynamical matrix ω1 and monitor the system during the first time
interval t = 0 as a function of K.

In Fig. 8(a), we show that the ensemble-averaged kinetic
energy per atom at which the first atomic rearrangement occurs,
⟨Kr⟩, decreases with increasing N. We find that ⟨Kr⟩ ∼ N−2k,
where k ≈ 0.68 for R = 10−2 and ≈0.60 for R = 10−5. ⟨Kr⟩ is
smaller for rapidly compared to slowly cooled glasses since ⟨U∗⟩
decreases with increasing R.23,51,52 These results emphasize that
Q can be increased by making resonators smaller and preparing
them using slower cooling rates. For example, experimental stud-
ies of Pt-based metallic glass microcantilevers have reported that
the quality factor can be increased by more than a factor of 3 after
annealing.9

Using a typical energy scale of 0.1 eV for the depth of the pair
potential for NiP metallic glasses,53 we find that the characteristic
temperature scale associated with Kr for a Lennard-Jones system
with N = 8000 atoms is on the order of several millikelvin. Thus,
our results are most relevant to those for low-temperature experi-
ments, where the transfer of energy out of a single eigenmode can be
monitored, and not to room temperature experiments, where atomic
rearrangements occur frequently and equipartition can be achieved.
For example, there have been low-temperature experiments focused
on the vibrational properties of amorphous silica,54,55 polycrystalline
aluminum,56 and other crystalline and amorphous solids. All of
these experimental studies considered temperatures between 0.1 mK
and 1 K.

We can also compare the kinetic energy per atom ⟨Kr⟩ required
to induce the first atomic rearrangement in thermally vibrating sys-
tems to the characteristic shear strain ⟨γr⟩ required to induce the
first atomic rearrangement in systems driven by athermal quasistatic
(AQS) shear. To calculate ⟨γr⟩, we confine N atoms interacting via
the Kob-Andersen model to cubic boxes with periodic boundary
conditions in the x-, y-, and z-directions. We cool the samples from
temperature T0 to zero using a linear ramp over a range of cooling
rates R from 10−5 to 10−2. For each sample, we perform AQS pure
shear at fixed volume V, i.e., at each strain step, we expand the box
length and move all atoms affinely in the x-direction by a small strain
increment δγx = δγ = 10−4 and compress the box length and move
all atoms affinely in the y-direction by the same strain increment
δγy =−δγ. Following each strain step, we perform conjugate gradient
energy minimization at fixed volume. To measure ⟨γr⟩, we employ
the method we developed previously21 to unambiguously determine
whether an atomic rearrangement occurs with an accuracy on the
order of numerical precision. As shown in Fig. 8(c), we find that
⟨γr⟩ ∼ N−κ also decreases with increasing N, where the system-size
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FIG. 8. (a) The ensemble-averaged kinetic energy per atom ⟨K r⟩ above which the first atomic rearrangement occurs vs system size N for rapidly and slowly cooled glasses
with R = 10−2 (blue circles) and 10−5 (green pluses), respectively. In each case, ⟨K r⟩ is averaged over 20 independent samples. The slopes of the dashed lines are −k. (b)
Probability distribution P(K r ) for the samples in (a), prepared with cooling rates R = 10−2 and R = 10−5 and system sizes N = 500, 2000, and 8000. (c) Ensemble-averaged
pure shear strain ⟨γr⟩ above which the first atomic rearrangement occurs during athermal, quasistatic pure shear vs system size N for glasses prepared using R = 10−2

(blue circles), 10−3 (black squares), 10−4 (red triangles), and 10−5 (green pluses). ⟨γr⟩ is averaged over 500 samples, and the error bars represent the standard deviations.
The negative κ-values give the slopes of the dashed lines.

scaling exponent κ ∼ 0.6–0.68 is again only weakly dependent on
the cooling rate. These results for the system-size scaling expo-
nents in athermal quasistatic shear are consistent with dimen-
sional arguments that suggest κ ∼ 2k, and thus, athermal quasistatic
shear can be used to understand the low temperature properties of
glasses.

Using these results, we can estimate the strains below
which resonators can operate in the harmonic response regime.
For the slowest cooling rate R = 10−5, we find that log10⟨γr⟩
≈ −2k log10 N + γ∞, where 2k ≈ 0.60, γ∞ ≈ 0.11, N = ρ(l/D)3, the
number density ρ ≈ 1.2, D ≈ 3.7 Å is a typical atomic diameter for
Ni80P20 metallic glasses53 (which is the subject of the Kob-Andersen
model), and l is a characteristic lengthscale of the resonator. We
find that ⟨γr⟩ ∼ 5 × 10−4 for a resonator with l ∼ 20 nm, whereas
⟨γr⟩ ∼ 3 × 10−8 for a resonator with l ∼ 5 μm.57,58 Micrometer-
scale metallic glass resonators have been fabricated as hemispher-
ical shells10 and as cantilevers.9 In addition, strains in the range
from 10−7 to 10−4 have been used in measurements of internal
friction in metallic glass resonators.59 Our results emphasize that
nano-sized metallic glass resonators operating in the small strain
(e.g., <10−7) and low temperature regimes are promising high-Q
materials.

There have been a number of experimental studies60–62 that
have shown that metallic glasses at room temperature are stronger
and more dissipative in smaller samples compared to larger ones.
In contrast, here we show that our model resonators composed of
atoms with Lennard-Jones-like interactions show less loss as the sys-
tem size decreases since Kr decreases with increasing system size
N. A key difference between our computational studies and the
experimental studies is that ours are carried out at extremely low
temperature and applied strains, while the above-mentioned exper-
iments were carried out at room temperature and finite strains. An
important aspect of our work is that we show that atomic rearrange-
ments can cause significant loss even at such low temperatures and
strains.

C. Comparison between crystalline and amorphous
resonators

In Sec. III B, we showed that the characteristic kinetic
energy per atom ⟨Kr⟩ above which atomic rearrangements occur
increases modestly with decreasing cooling rate. Furthermore, we
know that crystalline ordering increases with decreasing cooling
rate. Does this imply that crystalline metals are higher-Q mate-
rials compared to amorphous metals? In this section, we cal-
culate ⟨Kr⟩ for resonators made from single crystal, polycrys-
talline, and defected crystalline materials and compare these results
to those for resonators made from homogeneously amorphous
samples.

Crystalline metals often contain slip planes, dislocations, grain
boundaries, and other defects, and the defect density typically
increases with increasing cooling rate. To generate crystalline mate-
rials with defects in simulations, we will again use the Kob-Andersen
model, but with monodisperse atoms, εAA = εAB = εBB = 1.0 and
σAA = σAB = σBB = 1.0, to enhance crystallization. We will employ
the same protocol as discussed in Sec. II to generate thin-bar res-
onators with N = 2000 and aspect ratio Lx:Ly:Lz = 6:1:2 over a range
of cooling rates from R = 10−4 to 102. The method of excitation and
measurement of the loss and Kr are also the same as described in
Sec. II.

Snapshots of the zero-temperature thin-bar resonators gen-
erated using six different cooling rates are shown in Fig. 9 (with
periodic boundary conditions and prior to adding excitations). We
use the Common Neighbor Analysis (CNA)63 to identify atoms
that occur in crystalline [either face-centered cubic (fcc) or hexag-
onal close packed (hcp)] and amorphous environments in the thin
bars. In Fig. 10(a), we show that the ensemble-averaged fraction of
crystalline atoms ⟨ f X⟩ decreases with increasing R. ⟨ f X⟩ is nearly
90% when R = 1.2 × 10−4 and ⟨ f X⟩ = 0 for R = 1.2 × 10−1.
Near the critical cooling rate Rc ≈ 10−2.5, the system contains
a roughly equal mixture of atoms in crystalline and amorphous
environments.
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FIG. 9. Snapshots of thin-bar-shaped
resonators with N = 2000 monodisperse
atoms obtained using cooling rates (a)
R = 1.2 × 10−4, (b) 1.2 × 10−3,
(c) 3 × 10−3, (d) 6 × 10−3, (e) 1.2
× 10−2, and (f) 1.2 × 10−1 in periodic
boundary conditions prior to applying the
excitations. Atoms with crystalline (fcc
or hcp) order are colored green, while
amorphous atoms are colored gray.

FIG. 10. (a) Fraction of crystalline atoms ⟨ f X⟩, (b) total dislocation length ⟨LD⟩,
and (c) kinetic energy per atom ⟨K r⟩ above which atomic rearrangements occur
as a function of cooling rate R for resonators made using the monodisperse Kob-
Andersen model. The ensemble averages are obtained by averaging over at least
10 independent samples. The dotted horizontal lines in (b) and (c) show ⟨LD⟩ and
⟨K r⟩ for four nearly perfect, crystalline thin bars with specifically placed defects.
For example, the red dotted lines represent the thin-bar sample in Fig. 11. The
black dashed line in (c) shows ⟨K r⟩ for a thin bar with perfect fcc order. The
solid vertical lines in panels (a)–(c) give approximate boundaries between the four
regimes of vibrational response as a function of cooling rate R.

To quantify disorder in the thin-bar samples, we used the Dis-
location Extraction Analysis (DXA) tool within the OVITO software
library.64 DXA allows us to measure the total dislocation length LD,
which gives the sum of the magnitudes of the Burgers vectors for
each dislocation in the sample. For R ≪ 1, we expect few defects,
and thus, ⟨LD⟩ → 0. In Fig. 10(b), for small R, we show that LD
increases with cooling rate R.7,27 When R > 3 × 10−3, ⟨LD⟩ drops
sharply since the thin-bar samples include mixtures of atoms with
crystalline and amorphous environments. LD → 0 when the sample
becomes completely amorphous.

To determine the vibrational response, we excite the funda-
mental mode ω1 for each sample and measure ⟨Kr⟩ as a function
of R. The behavior for ⟨Kr⟩ can be divided into four regimes [see
Fig. 10(c)]. First, at low cooling rates R ≲ 3 × 10−3 (regime I), the sys-
tems are mostly crystalline with sparse dislocations. In this regime,
as R increases, more dislocations are formed and ⟨LD⟩ increases,
which causes ⟨Kr⟩ to decrease. In regime II, at intermediate cool-
ing rates 3 × 10−3 ≲ R ≲ 1.2 × 10−2, ⟨ f X⟩ drops sharply and the
thin bars contain mixtures of crystalline and amorphous atoms. The
additional boundaries between amorphous and crystalline regions
of the system cause a larger decrease in ⟨Kr⟩ than at smaller R.
In regime III, 1.2 × 10−2 ≲ R ≲ 3 × 10−1, the thin-bar resonators
become homogeneously amorphous and metastable, causing ⟨Kr⟩
to increase by a factor of ≈4. At the high cooling rates R ≳ 3
× 10−1 in regime IV, ⟨Kr⟩ will decrease modestly with increasing R.
For the Kob-Andersen bidisperse mixture, we have already shown
in Fig. 8(a) that ⟨Kr⟩ decreases by a factor of ≈3 as R is increased
over three orders of magnitude. This local maximum in ⟨Kr⟩(R)
is interesting because it shows that there is a regime where amor-
phous resonators can have larger Q-values than partially crystalline
resonators.

In addition to studying the vibrational response of thin-bar
resonators generated by cooling a high-temperature liquid into a
solid, we also investigated the vibrational response of systems for
which we started with perfect fcc crystalline thin bars and generated
specifically placed defects. In particular, we generated four thin-bar
samples that were initialized with perfect fcc order, and then, we
removed a slot with a width of one atom, depth of two atoms, and
varying lengths along different directions in the sample. An exam-
ple is shown in Fig. 11. We display ⟨LD⟩ and ⟨Kr⟩ for these four
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FIG. 11. Snapshots of thin-bar crystalline resonators with a specifically placed defect. In (a), we delete a row of atoms from a resonator with perfect fcc order and perform
energy minimization, which yields the thin-bar resonator in (b). (c) We identify two dislocations in the resonator in (b) colored yellow and gray.

systems in Figs. 10(b) and 10(c). These samples possess a range of
⟨Kr⟩: some values are larger than that of the rapidly cooled glass
(R = 1.2 × 10−1), while others are not. These results show that amor-
phous resonators can possess values of ⟨Kr⟩ (and thus Q) that are
comparable to those for crystalline samples. For example, the thin-
bar resonator corresponding to the green dotted horizontal line in
Fig. 10(c) possesses a smaller ⟨Kr⟩ than that of the rapidly cooled
glass, with a dislocation density ⟨LD⟩/V ≈ 2× 1016 m−2, which is sim-
ilar to values for crystalline metals with strong dislocations.65 Since
metallic glasses do not need to be annealed, can be molded into com-
plex shapes, possess unique magnetic and biocompatibility prop-
erties,15–17,66,67 and can possess comparable quality factors to crys-
talline metals,9 metallic glasses are promising materials for high-Q
applications.

IV. CONCLUSION
In this article, we employ molecular dynamics simulations of

model metallic glass resonators undergoing vibrations to quantify
the intrinsic dissipation and loss mechanisms caused by thermal
fluctuations and atomic rearrangements. Using thin-bar resonators
generated over a wide range of cooling rates, we excite the funda-
mental mode corresponding to the lowest eigenfrequency ω1 of the
dynamical matrix as a function of the kinetic energy per atom K. We
find three regimes of vibration. In the harmonic response regime,
K < Knl, most of the energy of the vibrations remains in the funda-
mental mode, the loss is small, and Q→∞ over the time period we
consider (since we do not consider coupling of the resonator to the
environment). For Knl < K < Kr , energy can leak from the funda-
mental mode to others at short times, but at sufficiently long times,
the leakage of energy to other frequencies stops, and thus, Q→∞ at
the longest times we consider. For K > Kr , one or more atomic rear-
rangements occur. In this regime, energy in the fundamental mode is
completely redistributed to a large set of other frequencies, the loss
is large, and Q is finite. Thus, we show that Kr strongly affects the
quality factor.

We find that ⟨Kr⟩ decreases as a power-law N−k with increasing
system size N, where k ≈ 1.3 decreases only modestly with decreas-
ing R. We find similar results for the critical shear strain ⟨Kr⟩ ∼ ⟨γr⟩2
using athermal quasistatic shear deformation, where ⟨γr⟩ is the char-
acteristic strain above which atomic rearrangements begin to occur.
Using these results, we estimate that ⟨γr⟩ ∼ 10−8 for micrometer-
sized resonators, and thus, large Q-values can be obtained when
these resonators are operated at γ < ⟨γr⟩ at low temperatures.
We also measured ⟨Kr⟩ in thin-bar resonators with crystalline
order and compared the vibrational response to that in amorphous

resonators. We find that ⟨Kr⟩ is similar for amorphous resonators
and those with significant crystalline order. In light of the fact
that metallic glasses can be thermoplastically formed into complex
shapes, possess unique magnetic and biocompatibility properties,
and can achieve Q-values that are comparable to those for crystalline
structures (at low temperatures), metallic glasses are promising
materials for micro- and nanoresonators.

Our results raise a number of interesting future directions. For
example, we can investigate methods that involve mechanical defor-
mation, not slower cooling rates or annealing methods, to increase
⟨Kr⟩ and move the sample to regions of configuration space with
higher energy barriers between inherent structures. One possible
approach is to apply athermal cyclic simple or pure shear defor-
mation to samples that have been prepared using fast cooling rates.
Recent studies have found that there is a finite critical strain ampli-
tude for cyclic shear that marks the limit between reversible and
irreversible atomic rearrangements in the large-system limit.68–70

Does this imply that cyclic shear training can find zero-temperature
configurations for which ⟨Kr⟩ remains finite in the large-system
limit? In addition, we can explore how the type of cyclic driving
affects ⟨Kr⟩ and whether configurations can be trained in mul-
tiple directions simultaneously to increase ⟨Kr⟩. Another future
direction involves studies of the loss and quality factor when the
resonator has clamped instead of free boundary conditions and
when it is driven over a range of frequencies, not only the funda-
mental mode. It is also important to compare the results of our
studies that consider systems at constant energy to the vibrational
response of systems sheared at finite strain rate and coupled to a
thermostat.71
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APPENDIX A: LOW-FREQUENCY EIGENMODES
OF THE RESONATOR

In the main text, we focused on samples with N = 2000
atoms, rectangular cross section, and aspect ratios, Lx/Ly = 6 and
Lz/Ly = 2. The elongated, asymmetric shape of the samples was
selected so that the lowest eigenfrequency is well-separated from
other low-frequency modes. Having well-separated low-frequency
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FIG. 12. Vector fields representing the
first three eigenmodes of the dynami-
cal matrix for metallic glass samples with
N = 2000 and aspect ratios Lx /Ly = 6 and
Lz /Ly = 2 [(a), (c), and (e)] and N = 1000
and aspect ratios Lx /Ly = 3 and Lz /Ly

= 1 [(b), (d), and (f)]. The color scale
highlights the y- or z-component of the
fundamental mode contribution for each
atom with red corresponding to posi-
tive and blue corresponding to negative
values.

modes makes it easier to study leakage of energy from the fundamen-
tal mode to other frequencies. For example, in Fig. 3, we analyzed the
dynamical matrix for the Lx/Ly = 6 and Lz/Ly = 2 sample and found
that the lowest three nontrivial eigenfrequencies are ω1 = 0.171,
ω2 = 0.270, and ω3 = 0.300 [dashed vertical lines in Fig. 3(b)]. We
display the eigenmodes corresponding to these three eigenfrequen-
cies in Fig. 12. ω1 and ω3 correspond to bending modes, and ω2
corresponds to a torsional mode. To determine the effects of aspect

ratio on the eigenmodes, we also calculated the eigenfrequencies and
eigenmodes of the dynamical matrix for a more symmetric bar with
N = 1000 atoms and aspect ratios Lx/Ly = 3 and Lz/Ly = 1. The results
are summarized in Table I and Fig. 12. ω1 and ω2 correspond to
bending modes, and ω3 corresponds to a torsional mode. The lowest
eigenfrequency ω1 of the bar with Lx/Ly = 6 and Lz/Ly = 2 is much
smaller than ω2 and ω3, and ω1 ∼ ω2 ∼ ω3 for a bar with Lx/Ly = 3
and Lz/Ly = 1.

TABLE I. The aspect ratios and system sizes of the metallic glass thin-bar resonators considered in the computational studies of the quality factor. We show the lowest three
eigenfrequencies of the dynamical matrix for these systems and describe their spatial structure. Visualizations of the eigenmodes are shown in Fig. 12.

Aspect ratios Lx/Ly Panel number of Fig. 12
and Lz/Ly and (Lowest three) that shows corresponding
system size N eigenfrequencies eigenmode Mode structure Color scale

Lx/Ly = 6, Lz/Ly = 2,
N = 2000

ω1 = 0.17 (a) Bending in xy-plane y-component
ω2 = 0.27 (c) Torsion y-component
ω3 = 0.30 (e) Bending in xz-plane z-component

Lx/Ly = 3, Lz/Ly = 1,
N = 1000

ω1 = 0.42 (b) Bending in xy-plane y-component
ω2 = 0.46 (d) Bending in xz-plane z-component
ω3 = 0.51 (f) Torsion y-component
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FIG. 13. The low-frequency regime for the power spectrum of the kinetic energy (for the first time interval t = 0) D(ω, 0) near the fundamental frequency ω1 ≈ 0.172 (vertical
dashed line) calculated using time series with two different total lengths, δt = 135 (black circles) and 1350 (blue exes), at K = 5 × 10−6 in the harmonic response regime. In
the inset, we show the loss L(0) vs K for the same time series in the main panel. The characteristic kinetic energy per atom above which an atomic rearrangement occurs is
indicated: K r = 1.62 × 10−6 (black dotted line) for δt = 135 and K r = 1.26 × 10−6 (blue dotted line) for δt = 1350.

APPENDIX B: DEPENDENCE ON THE LENGTH
OF THE TIME SERIES

In the main text, we used a total run length of δt = 135 to cal-
culate the power spectrum of the kinetic energy and loss for the
first time interval t = 0 in Figs. 3 and 5 (as well as all other time
intervals). In this appendix, we show results for D(ω, 0) when δt
is increased by a factor of 10 (keeping the sampling rate fixed). In
Fig. 13, for K < Kr in the harmonic response regime, we show that
the peak value of D(ω1, 0) is unchanged for δt = 135 and 1350, and
thus, L(0) is nearly the same for the two values of δt. We know that
the probability for an atomic rearrangement increases with time δt
at fixed K. Thus, in the inset to Fig. 13, we show that the loss L(0)
undergoes a discontinuous jump for δt = 1350 at a smaller K than
that for δt = 135. We find that Kr ≈ 1.62 × 10−5 for δt = 135 and
≈1.26 × 10−5 for δt = 1350. Thus, the precise value of Kr depends
on δt, but all of the results are qualitatively the same for different
choices of δt.

APPENDIX C: TIME-DEPENDENT POWER
SPECTRUM OF THE KINETIC ENERGY

For the calculations of the power spectrum of the kinetic energy
and loss in the main text, we divided a long time series following
the excitation of the resonator along the fundamental mode into 20
time intervals of equal length δt. We showed the power spectrum of
the kinetic energy D(ω, 0) for the first time interval (i.e., considering
times from 0 to δt) in Fig. 3. In this appendix, we calculate D(ω, t)
for all 20 time intervals. In Fig. 14, we showD(ω, t) forK values in the
three regimes, K < Knl, Knl < K < Kr , and K > Kr , which match those
used in Fig. 6(a). For K < Knl, there is minimal leakage of energy
from the fundamental mode ω1 = 0.172 and Q → ∞ for the time
period we consider. In the regime Knl < K < Kr , energy leaks from
the fundamental mode at short times, but it stops for t/δt ≳ 12, and
the system vibrates anharmonically with finite loss, finite Q for t/δt
≲ 12 and Q → ∞ for t/δt ≳ 12. For K > Kr , strong energy leakage
occurs due to an atomic rearrangement at t/δt ≈ 5.

FIG. 14. The power spectrum of the kinetic energy at time t D(ω, t) vs time t/δt in the three regimes for the kinetic energy per atom: (a) K < Knl , (b) Knl < K < K r , and (c)
K > K r , for a N = 2000 thin-bar resonator with amorphous structure. The color scale from yellow to dark blue give decreasing values of D(ω, t) in panel (a), and log10 D(ω, t)
in panels (b) and (c).
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FIG. 15. (a) Loss L(0) for the first time interval t = 0 vs the initial kinetic energy per atom K for a thin-bar resonator with atoms interacting via Lennard-Jones interactions
vs nonlinear spring networks with B = 100. The solid vertical line indicates K r ≈ 5 × 10−5.49 at which the first atomic rearrangement occurs in the Lennard-Jones system.
The dashed horizontal line indicates the loss threshold Ll for a harmonic oscillator with a dimensionless measurement time δt that deviates from an integer. (b) Loss L(t) vs
the time interval t for thin-bar resonators composed of atoms that interact via Lennard-Jones interactions with kinetic energy per atom K = 9.98 × 10−6, 1.20 × 10−5, and
1.26 × 10−5 vs nonlinear spring networks (with B = 100) at K = 1.58 × 10−4. (c) Loss L(t) vs the time interval t for nonlinear spring networks for K = 5 × 10−2 and B = 1
and 100.

APPENDIX D: VIBRATIONAL RESPONSE
OF NONLINEAR SPRING NETWORKS

As discussed in the main text, there is an important differ-
ence between studies of equipartition in nonlinear spring networks
(that do not rearrange) and in collections of Lennard-Jones atoms
that can undergo atomic rearrangements. To investigate this dif-
ference, we carried out additional simulations to compare results
for the loss for a Lennard-Jones glassy configuration [with the pair
potential u(rij) given in Sec. II] and the same configuration, but with
pair interactions between atoms i and j of the form for a nonlinear
spring network: us(rij) = 0.5 A(rij0)(rij − rij0)2 +A(rij0)B(rij − rij0)4,
where rij0 is the separation between atoms i and j in the
reference configuration, A(rij0) is the second derivative of the
Lennard-Jones potential with respect to rij at rij = rij0, and B is the
coefficient of the fourth order term in us(rij). Note that in the non-
linear spring system, us(rij) has infinite range and does not tend
to zero in the large-separation limit. We also maintain the list of
neighbors for each atom at all times, and thus, for atoms interact-
ing via us(rij), the atoms do not rearrange. For the systems with
us(rij), we calculate the dynamical matrix, excite the lowest eigen-
mode of the system, and measure the loss as a function of time.
Previously, we performed similar studies for models of granular
media.72

In Fig. 15(a), we show the loss L(0) for the first time inter-
val t = 0 vs the initial kinetic energy per atom K for both the
Lennard-Jones system and nonlinear spring network. At small K,
we find that L(0) shows a similar increase with K for the Lennard-
Jones system and nonlinear spring network. L(0) increases con-
tinuously over the full range of K for the nonlinear spring net-
work, but L(0) for the Lennard-Jones system increases much more
dramatically as K approaches Kr when the system undergoes an
atomic rearrangement. Thus, the nonlinear spring network requires
a much larger value of K to achieve the same value of the loss
L(0) compared to the Lennard-Jones system. For example, at K
= Kr , L(0) for the Lennard-Jones system and nonlinear spring net-
work differ by more than four orders of magnitude. This result
is important; it shows that atomic rearrangements (which are not

typically included in studies of nonlinear spring networks) play an
important role in determining the transfer of energy out of the
excited mode.

In Fig. 15(b), we compare the loss L(t) as a function of the
time interval t for the Lennard-Jones system and nonlinear spring
network at comparable values of K near 10−5. In this range of
K for the nonlinear spring system, L(t) ∼ 10−4 and it does not
change significantly with time. However, over the same range of
K and time interval, L(t) for the Lennard-Jones system varies sig-
nificantly as the system approaches and crosses a potential energy
barrier associated with an atomic rearrangement. We find that
for K < Knl, L(t) for the Lennard-Jones system is small and does
not show any significant time dependence. For Knl < K < Kr ,
L(t) for the Lennard-Jones system increases to ∼0.2 and then
remains nearly constant over the time range that we considered.
And then for K > Kr , L(t) increases dramatically, reaching L ∼ 1
after an atomic rearrangement. Again, L(t) is extremely small at
all times considered over this range of K for the nonlinear spring
network.

In Fig. 15(c), we show the loss L(t) for the nonlinear spring
network at a much larger value of K, i.e., K = 0.05. In this regime,
L(t) increases with time, yielding a finite value of Q, which decreases
with increasing B. It is possible that the quality factor Q in the
regimes of the kinetic energy per particle, K < Knl and Knl < K
< Kr , is not strictly infinite, but instead just extremely large and
possibly time dependent. Even though determining whether or not
Q→∞ in these regimes is important, it is not the main point of the
manuscript. Instead, the key aspect of the manuscript is determining
the effects of atomic rearrangements on the quality factor of metallic
glass resonators.
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