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Connecting polymer collapse and the onset of jamming
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Previous studies have shown that the interiors of proteins are densely packed, reaching packing fractions that
are as large as those found for static packings of individual amino-acid-shaped particles. How can the interiors
of proteins take on such high packing fractions given that amino acids are connected by peptide bonds and
many amino acids are hydrophobic with attractive interactions? We investigate this question by comparing the
structural and mechanical properties of collapsed attractive disk-shaped bead-spring polymers to those of three
reference systems: static packings of repulsive disks, of attractive disks, and of repulsive disk-shaped bead-spring
polymers. We show that the attractive systems quenched to temperatures below the glass transition T � Tg and
static packings of both repulsive disks and bead-spring polymers possess similar interior packing fractions.
Previous studies have shown that static packings of repulsive disks are isostatic at jamming onset, i.e., the
number of interparticle contacts Nc matches the number of degrees of freedom, which strongly influences their
mechanical properties. We find that repulsive polymer packings are hypostatic at jamming onset (i.e., with fewer
contacts than degrees of freedom) but are effectively isostatic when including stabilizing quartic modes, which
give rise to quartic scaling of the potential energy with displacements along these modes. While attractive disk
and polymer packings are often considered hyperstatic with excess contacts over the isostatic number, we identify
a definition for interparticle contacts for which they can also be considered as effectively isostatic. As a result,
we show that the mechanical properties (e.g., scaling of the potential energy with excess contact number and
low-frequency contribution to the density of vibrational modes) of weakly attractive disk and polymer packings
are similar to those of isostatic repulsive disk and polymer packings. Our results demonstrate that static packings
generated via attractive collapse or compression of repulsive particles possess similar structural and mechanical
properties.

DOI: 10.1103/PhysRevE.109.034406

I. INTRODUCTION

It has long been appreciated since the first atomic-
resolution x-ray crystal structures of proteins were solved
that their interior, solvent-inaccessible, or core, regions are
densely packed, regardless of the differences in their overall
folds [1–6]. Other experimental atomic-scale structural char-
acterization methods, such as NMR spectroscopy, provide
all-atom structures of proteins in solution and at room tem-
perature and have shown that high-quality NMR structures
also possess densely packed interiors with packing fractions
similar to those of x-ray crystal structures [7]. Perturbing the
dense packing of the solvent-inaccessible hydrophobic inte-
rior of proteins via amino acid mutations has been shown to
significantly affect protein structure and stability [8–11]. In
addition, the properties of protein core packing have been used
to predict the accuracy of the overall fold in computational
protein structure prediction [12].

Prior analyses of protein x-ray crystal structures that al-
lowed unphysical atomic overlaps suggested that the interiors
of proteins possessed packing fractions as large as φ ∼ 0.7–
0.75 [1,5]. However, more recent studies that account for the

nonspherical shapes of amino acids and do not allow atomic
overlaps have shown that the average packing fraction of
solvent-inaccessible amino acids is φ ≈ 0.55 ± 0.02 [6,13–
15]. Why do the core regions of all experimentally determined
protein structures, regardless of the overall fold, possess this
value for the packing fraction? Previously, we have shown
that jammed packings of rigid amino-acid-shaped particles
with purely repulsive interactions under periodic boundary
conditions possess similar packing fraction distributions as
those for experimentally determined protein cores [6]. De-
spite this agreement, these prior simulations lacked important
features of protein structure: The amino acids were rigid
with no backbone dihedral angle degrees of freedom and
they were disconnected, lacking peptide bonds; the pack-
ings were generated by compression, not by hydrophobic
polymer collapse; and the packings were generated using
periodic boundary conditions instead of being fully solvated.
In addition, when thermal fluctuations are included in the
amino-acid-shaped particle-packing generation protocol, we
find that the onset of jamming occurs over a range of pack-
ing fractions, 0.55 � φJ � 0.62, where φJ increases as the
rate at which thermal energy is removed from the system
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FIG. 1. Example static packings (above) and the corresponding potential energy V/ε (below) for (a) repulsive disk-shaped monomers,
(b) repulsive polymers, (c) attractive disks, and (d) attractive polymers. The disk diameters are polydisperse, obeying an inverse power-law
distribution for the diameters; the color shading indicates the particle size from large to small (light green to blue). The cyan shading in (c) and
(d) indicates the range of the attractive interactions with α = 1.5 [Eq. (3)]. The black solid lines connecting adjacent disks in (b) and (d) indicate
the polymer backbone. The repulsive nonbonded interactions [Eq. (1)] is plotted as a red solid line, which is zero at contact (vertical dashed
line and circle marker). The polymers include the same repulsive interactions and extend the interaction for ri j > σi j to a double-sided linear
spring [Eq. (2)] for bonded disks (blue dashed line). Nonbonded attractive interactions are specified by an attractive range α and strength β

[Eq. (3)] indicated by a green dot-dashed line. The nonbonded interaction is extended to rβ/σi j = 1 + σi jβ (vertical dot-dashed line and square
marker where V changes concavity), after which V harmonically returns to zero at rα/σi j = 1 + α (vertical dotted line and triangle marker).

decreases [16,17]. To date, the only high-resolution exper-
imentally determined protein cores that possess φ � 0.55
were solved using x-ray crystallography at extremely high
pressures [18,19].

Numerous scattering experiments on protein structures
have also suggested that, like glasses and jammed granular
packings, proteins possess an excess of low-frequency modes
in the vibrational density of states (VDOS) [20–23]. In the
case of jammed repulsive disk packings, studies have es-
tablished a connection between the form of the VDOS and
isostaticity, where the number of interparticle contacts equals
the number of degrees of freedom. Near jamming onset in
these systems, the VDOS possesses a large excess, relative
to the Debye prediction, of low-frequency, quasilocalized
modes, which gives rise to anomalous mechanical properties
[24–28].

Does the correspondence between the packing fraction
of jammed packings of repulsive, disconnected amino-acid-
shaped particles generated via rapid compression and the
cores of experimentally determined proteins indicate a deep
connection between the two systems or is it fortuitous? More
generally, however, it is unknown what the connection is
between polymer collapse and jamming onset, let alone for
biological polymers such as proteins. To isolate the essen-
tial features of this more general problem, we can ask, for
connected and disconnected spherical particles, what is the
relationship between the thermal collapse of sticky, spherical
bead-spring polymers or aggregation of sticky spherical par-
ticles and the onset of jamming of purely repulsive spherical
particles under athermal, quasistatic compression?

Here, to understand the connection between the thermal
collapse of sticky polymers and jamming of repulsive particles
under athermal compression, we compare the interior packing
fractions of static packings of single disk-shaped bead-spring
polymers and static packings of disconnected disks, with ei-
ther attractive or repulsive interactions in two dimensions, as
shown in Fig. 1. For systems with nonbonded attractive inter-
actions, we study the interior packing fraction as the system is
cooled below the glass transition temperature at varying rates.
For systems with purely repulsive nonbonded interactions,
we develop an open-boundary “jamming” protocol where
the system undergoes athermal, quasistatic compression until
reaching a mechanically stable state using an externally ap-
plied radial force.

We find several important results. First, for a collapsed
polymer with attractive nonbonded interactions to obtain in-
terior packing fractions φ similar to those found for jammed
packings of purely repulsive disks, they must be quenched
well below the glass transition temperature. Additionally, we
find that the attractive systems quenched to zero temperature
and the repulsive systems compressed to jamming onset with
open boundary conditions possess similar interior packing
fractions for all system sizes, damping parameters, and ini-
tial temperatures studied for both disks and polymers. We
show that packings of attractive disks and polymers possess
excess low-frequency vibrational modes in the limit of small
attractive strength. As expected, we find that repulsive disks
compressed to jamming onset are isostatic. In contrast to
prior work, we find that packings of repulsive polymers are
hypostatic at jamming onset. However, the number of missing
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contacts matches the number of “quartic” modes (i.e., the
potential energy increases as δ4 for displacements by δ along
these modes), and thus packings of repulsive polymers are
effectively isostatic. While packings of attractive monomers
and polymers are hyperstatic when counting contacts using
the full interaction potential, we find they can also be consid-
ered to be effectively isostatic if we appropriately redefine the
interparticle contact network according to the attractive poten-
tial used. By varying the attractive strength, we observe the
same scaling of the low-frequency modes of the vibrational
density of states, D(ω), and excess number of contacts 	N
from the isostatic number versus the potential energy as found
for repulsive disk packings compressed above jamming onset.

This article is organized into three additional sections and
three Appendices. In Sec. II, we describe the numerical mod-
els for the disk-shaped bead-spring polymers and disk-shaped
monomers with nonbonded attractive and repulsive interac-
tions and the packing generation protocols. In Sec. III, we
present the results for the interior packing fraction, charac-
teristic plateau frequency of the vibrational density of states,
D(ω), and contact number for each system. Finally, in Sec. IV,
we discuss the implications of the results for understanding
the dynamics of polymer collapse and protein folding and
propose future work on jamming onset in all-atom protein
models. In Appendix A we provide additional details on the
packing-generation protocol. In Appendix B, we describe
methods to avoid size segregation when applying a radial
force to generate jammed packings of repulsive monomers
and polymers in open boundary conditions. In Appendix C,
we describe methods for identifying holes, or connected void
space, in jammed packings.

II. NUMERICAL METHODS

A. Model systems

We study four types of systems: single disk-shaped
bead-spring polymers with attractive nonbonded interactions,
attractive disks (or monomers), single disk-shaped bead-
spring polymers with repulsive nonbonded interactions, and
repulsive disks (or monomers) as shown in Fig. 1. The non-
bonded, repulsive interactions are modeled by the repulsive
linear spring potential,

V rnb(ri j )

ε
= 1

2

(
1 − ri j

σi j

)2




(
1 − ri j

σi j

)
, (1)

where ri j is the center-to-center distance between disks i
and j, σi j is their average diameter, ε is the energy scale
of the repulsive interaction, and 
(x) is the Heaviside step
function. For the N − 1 bonded interactions between disks i
and j = i + 1 in the bead-spring polymer, the repulsive linear
spring potential is extended into a double-sided linear spring
potential:

V b(ri j )

ε
= 1

2

(
1 − ri j

σi j

)2

. (2)

We parametrize the nonbonded attractive interactions by the
attractive cutoff distance α and depth β. Previous work on
jamming of spherical particles with short-ranged attractive
interactions used a single parameter to characterize the attrac-

tive interactions [29–31]. Here we separate the attractive range
and depth to allow the model to capture both short-ranged,
sticky disks and molecular liquids with weak but long-range
attractive interactions. For the nonbonded attractive interac-
tions, we extend the potential in Eq. (1) to rβ > σi j and cut
off the interactions at rα = (1 + α)σi j > rβ :

V anb(ri j )

ε
=
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1
2

(
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)2 − Vc/ε for ri j � rβ

− k
2ε

( ri j

rα
− 1

)2
for rβ < ri j � rα

0 for ri j > rα

, (3)

where Vc/ε = (k/ε)(rβ/rα − 1)2/2 + (1 − rβ/σi j )2/2. The
pair potential energy for repulsive disks is V (ri j ) = V rnb(ri j )
[Fig. 1(a)] and for repulsive polymers is V (ri j ) = V b(ri j ) +
V rnb(ri j ) [Fig. 1(b)]. For attractive disks V (ri j ) = V anb(ri j )
[Fig. 1(c)] and for attractive polymers V (ri j ) = V b(ri j ) +
V anb(ri j ) [Fig. 1(d)]. The total potential energy and interpar-
ticle forces for each system are given by V = ∑

i> j V (ri j )

and �Fi j = −(dV/dri j )r̂i j . Note that we set Fi j (rβ ) = −εβ/σi j

and k/ε = (βrα/σi j )(rβ/rα − 1) to ensure that the nonbonded
energy and forces are continuous as shown in Fig. 1. Below we
consider dimensionless forces Fi jσs/ε, potential energies V/ε,
frequencies

√
ε/mσ−1

s , and temperature kbT/ε, where kb = 1
is the Boltzmann constant, m is the mass of each disk, and σs

is the size of the smallest disk.
To prevent crystallization [32] during the packing genera-

tion process, the disk diameters are selected randomly from
a power-law size distribution, P(σi ) = Aσ−3

i , where A is a
normalization constant, σs and σmax = 2.2σs are the mini-
mum and maximum diameters, and the polydispersity D =
(〈σ 2

i 〉 − 〈σi〉2)/〈σi〉2 ∼ 0.23. For each system size of N disks,
we average over 100 different sets of diameters {σi} that were
randomly selected from P(σi ).

B. Packing-generation protocol

For packing-generation protocols, the initial configurations
influence the final jammed packings [24]. Therefore, in this
study, we consider similar sets of initial configurations for all
four systems: attractive and repulsive bead-spring polymers
and attractive and repulsive disks. To achieve the initial states,
we generate liquid globule configurations of attractive bead-
spring polymers at initial temperatures Tg < T0 < Tm, where
the melting temperature Tm is defined as the midpoint of the
radius of gyration versus temperature curve and the glass tran-
sition temperature Tg indicates the divergence of the structural
relaxation time as a function of decreasing temperature, as
discussed in Appendix A. The initial disk configurations can
be obtained from the liquid globules by replacing the bonded
interactions with nonbonded interactions and the purely repul-
sive configurations can be obtained from the liquid globules
by replacing the nonbonded attractive interactions with purely
repulsive interactions. Packings at jamming onset for all four
systems can then be generated via damped molecular dynam-
ics (MD) simulations at varying dissipation rates b using the
appropriate potential energy functions, coupled with a thermal
quenching schedule for systems with attractive interactions
and a compression protocol with an applied radial force for
systems with purely repulsive interactions. For additional
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details concerning the packing-generation process for repul-
sive disks, repulsive polymers, attractive disks, and attractive
polymers and the methods for identifying surface disks and
calculating the core packing fraction, see Appendix A.

III. RESULTS

In this section, we describe the structural and mechanical
properties of static packings of disks and disk-shaped bead-
spring polymers with purely repulsive, as well as attractive
interactions. In Sec. III A, we first show that when attrac-
tive disk-shaped bead-spring polymers are cooled toward the
glass transition temperature Tg, the average packing fraction
of the interior (or core region) is well below values given for
random close packing for disordered packings of repulsive
disks. Therefore, in Sec. III B we study the core packing
fraction of attractive polymers as they are cooled from T0 > Tg

to zero temperature using damped MD simulations. We find
that attractive disk-shaped bead-spring polymers, as well as
attractive disks, when cooled to zero temperature, possess
similar core packing fractions as found for static packings of
repulsive disks and disk-shaped bead-spring polymers over a
wide range of initial temperatures T0, damping parameters b,
and system sizes N . In Sec. III C, we show that attractive disks
and disk-shaped bead-spring polymers quenched to zero tem-
perature possess an excess number of low-frequency modes in
the VDOS (similarly to jammed packings of repulsive disks).
We further show that slowly increasing the depth β of the
attractive interparticle potential causes the attractive packings
to lose low-frequency modes in a way that is similar to com-
pression of repulsive disk packings above jamming onset. In
Sec. III D, we find that, contrary to previous studies [33],
static packings of repulsive disk-shaped bead-spring polymers
are hypostatic at jamming onset, but the number of missing
contacts relative to the isostatic number matches the number
of “quartic” modes, such that the potential energy increases
as δ4 for displacements δ along these modes [34,35]. When
we account for the quartic modes in packings of repulsive
polymers, the excess number of contacts above isostaticity
scales as 	N ∼ (VrN3)λ as we found for packings of repulsive
disks, where Vr is the total repulsive potential energy of the
packing, λ = 1/2 at small 	N , and the exponent crosses over
to λ = 1/4 in the large-	N limit. Finally, in Sec. III E we
show that packings of attractive disks and of disk-shaped
bead-spring polymers are also effectively isostatic if contacts
are defined as ri j < rβ and they obey the same scaling of the
excess number of contacts with the repulsive energy, 	N ∼
(VrN3)λ, as found for static packings of repulsive disks and
disk-shaped bead-spring polymers.

A. Core packing fraction for collapsed polymers near Tg is well
below random close packing for repulsive disks

What is the core packing fraction of an attractive disk-
shaped bead-spring polymer as it is cooled toward the glass
transition temperature Tg? (For a discussion of estimates of the
melting temperature Tm and Tg in attractive systems, see Ap-
pendix A.) In Fig. 2, we plot the average core packing fraction
〈φ〉 versus T − Tg for N = 256 averaged over 100 attractive
polymers with different initial conditions. The core packing

FIG. 2. The average core packing fraction 〈φ〉 is plotted ver-
sus T − Tg. The dashed line gives 〈φ〉g − 〈φ〉 ∼ (T − Tg)γ , where
〈φ〉g ≈ 0.796 (dotted line) and γ ≈ 0.9. The horizontal solid line at
〈φ〉 ≈ 0.835 indicates the average packing fraction at jamming onset
for repulsive monomers under periodic boundary conditions.

fraction increases with decreasing temperature, 〈φ〉g − 〈φ〉 ∼
(T − Tg)γ , approaching the plateau value of 〈φ〉g ≈ 0.796 as
T → Tg (with γ ≈ 0.9). 〈φ〉g is similar to values reported for
the packing fraction near the glass transition in experimental,
computational, and theoretical studies of hard spheres in two
dimensions [36,37]. In contrast, static packings of N = 256
purely repulsive polydisperse disks, without a polymer back-
bone, possess a much larger packing fraction, 〈φ〉 ≈ 0.835, at
jamming onset [24]. The core packing fraction for collapsed
attractive polymers near Tg is far below that for static packings
of purely repulsive disks at jamming onset. This result indi-
cates that for the core packing fraction of collapsed attractive
polymers to reach those of jammed disconnected, repulsive
disks, they must be cooled to temperatures much below the
glass transition temperature.

B. Core packing fraction for collapsed polymers with T � Tg

matches that for jammed repulsive packings

To study the core packing fraction of collapsed, attractive
polymers below the glass transition temperature Tg, we per-
formed damped MD simulations to take attractive polymers
with initial temperatures Tm > T0 > Tg to zero temperature
using a wide range of damping parameters. In Fig. 3, we show
that the core packing fraction of collapsed, attractive polymers
increases with decreasing damping parameter from roughly
0.83 to 0.85 (circles with solid lines) for N = 512. For high
damping parameters, higher initial temperatures T0 give rise
to the lowest values of the core packing fraction. However,
for low damping parameters, the results for the core packing
fraction of collapsed, attractive polymers are the same for all
T0. To study the effects of the polymer backbone constraint
on the core packing fraction, we repeat these simulations
for disconnected, attractive disks (squares with solid lines).
The dependence of 〈φ〉 on the damping parameter b and ini-
tial temperature T0 is similar to that for collapsed, attractive
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FIG. 3. The average core packing fraction 〈φ〉 from damped
MD simulations plotted versus the damping parameter b for at-
tractive disk-shaped bead-spring polymers (circles with solid lines),
attractive disks (squares with solid lines), repulsive disk-shaped
bead-spring polymers (circles with dashed lines), and repulsive
disks (squares with dashed lines), prepared from initial temperatures
T0/Tm = 0.43 (red), 0.32 (yellow), and 0.27 (blue) for N = 512.

polymers; however, the packing fraction is shifted to larger
values by ≈0.01 for all b and T0.

To compare the core packing fraction of collapsed, attrac-
tive polymers to the packing fraction of jammed repulsive
systems, we developed a novel compression protocol to gen-
erate jammed repulsive systems in open boundary conditions.
(See Appendix B.) We start with the same attractive poly-
mer configurations prepared at T0 for both polymers and
disconnected disks. We then replace the nonbonded attrac-
tive interactions (V anb) with nonbonded repulsive interactions
(V rnb) and compress the system isotropically by attaching
each disk to a radial linear spring anchored to the origin. In
Fig. 3, we show the core packing fraction for jammed pack-
ings of repulsive disk-shaped bead-spring polymers (circles
with dashed lines) and repulsive disks (squares with dashed
lines). For these purely repulsive systems, the core packing
fraction does not depend strongly on T0. Further, for small T0,
the collapsed, attractive polymers and jammed repulsive poly-
mers possess similar core packing fractions for all damping
parameters b. In addition, there is qualitative agreement for the
core packing fraction of packings of disconnected attractive
and repulsive disks for all b. These results emphasize that
the attractive interactions do not strongly influence the core
packing fraction, i.e., structures that collapse due to attractive
interactions are similar to those that form due to mechanical
compression with weak thermal fluctuations.

As discussed above, the core packing fraction for col-
lapsed, attractive polymers is the lowest for high damping
parameters b and high initial temperatures T0. We find that
these collapsed structures possess large void regions sur-
rounded by regions that are densely packed. See Appendix C
for details on how we identify disks that occur near interior
void regions. When we do not consider disks that are adjacent
to void regions, the core packing fraction results converge for
different initial temperatures. Thus, aside from void regions,

FIG. 4. The core packing fraction 〈φ〉 from damped MD simu-
lations averaged over all initial temperatures T0 and plotted versus
the system size N and damping parameter b (increasing from purple
to yellow). We show results for (a) collapsed, attractive polymers
(circles with solid lines) and jammed repulsive polymers (circles with
dashed lines) and (b) attractive disks (squares with solid lines) and
jammed repulsive disks (squares with dashed lines). Void regions are
identified using probe size σp/σs = 1 and core disks adjacent to void
regions are not included in the calculation of 〈φ〉.

the initial temperature has only a minor effect on the packing
fraction of dense core regions of collapsed, attractive poly-
mers.

In Fig. 4, we present the results for the core packing
fraction (averaged over all T0 and excluding void regions)
plotted versus the system size N and damping parameter b for
[Fig. 4(a)] disk-shaped bead-spring polymers and [Fig. 4(b)]
disconnected disks. In general, when we do not consider void
regions, the core packing fraction for collapsed, attractive
polymers matches that for jammed, repulsive polymers and
the core packing fraction for packings of attractive disks
matches that for jammed repulsive disks for all b and N .
These results suggest that the structural properties of systems
with attractive interactions that are cooled to zero temper-
ature are similar to those for repulsive systems that are
compressed to jamming onset. In addition, we find that the av-
erage core packing fraction decreases with increasing system
size N , whereas packing-generation protocols that start from
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FIG. 5. (a) The local packing fraction 〈φl〉 and (b) hexatic or-
der parameter 〈|ψ6|〉 for each disk plotted versus the number of
Voronoi cells Nν between each disk and the closest surface disk for
collapsed, attractive polymers (solid lines) and jammed, repulsive
polymers (dashed lines) for several system sizes, N = 64 (circles),
128 (squares), 256 (upward triangles), 512 (downward triangles), and
1024 (stars) colored from blue to red with increasing system size N .

low-density configurations yield 〈φ〉 that typically increase
with N [24]. Note that jammed polymer packings possess
slightly lower packing fractions than jammed disk packings.
For polymers, 〈φ〉 varies between 0.84 and 0.85 in the large-N
limit. For disks, 〈φ〉 ≈ 0.85–0.86 for large N .

To better understand the system-size dependence of 〈φ〉,
we also calculate the local core packing fraction φl as a func-
tion of the distance to the surface of the packing. For small
packings, a relatively large fraction of the disks are located
near the curved boundaries. As N increases, a larger number
of disks are considered bulk, far from the curved boundaries.
In Fig. 5(a), we plot the local core packing fraction φl versus
the number of Voronoi cells Nν between a given disk and
the closest surface disk for collapsed, attractive polymers and
jammed, repulsive polymers. (Nν = 0 indicates that a core

disk is adjacent to a surface disk.) We find that the core
packing fraction for both attractive and repulsive polymers
is largest for small systems and near surface disks. As Nν

increases, 〈φl〉 decreases and converges in the large-system
limit. In addition, 〈φl〉 is more uniform for jammed, repulsive
polymer packings than for attractive polymers, indicating a
surface tension effect on the packing of attractive polymers.

We also calculated the local hexatic order parameter asso-
ciated with each core disk,

|ψ6| = 1

nk

∣∣∣∣∣∣
nk∑

j=1

e6iθ jk

∣∣∣∣∣∣, (4)

where θ jk is the angle between a central core disk k and
its Voronoi neighbors j = 1, . . . , nk , to determine whether
increases in the core packing fraction are correlated with in-
creases in positional order. In Fig. 5(b), we show that 〈|ψ6|〉 ∼
0.5 is independent of Nν and comparable to values for amor-
phous jammed disk packings [38].

C. Low-frequency contribution to the density
of vibrational modes

Above, we showed that the core packing fractions for col-
lapsed, attractive polymers and packings of attractive disks are
similar to those of jammed repulsive polymers and repulsive
disks. Do these disparate systems also share other structural
and mechanical properties of jammed packings of repulsive
disks? We first consider the VDOS D(ω), which is obtained
by calculating the dynamical matrix,

Mkl = ∂2V

∂�rk∂�rl
, (5)

where k and l label the 2N coordinates of the disks. The eigen-
vectors �ξ i

k = {ei
1x, ei

1y, . . . , ei
Nx, ei

Ny} represent an orthogonal
set of 2N normal modes whose eigenvalues ei correspond
to the normal mode frequencies ωi =

√
ei. D(ω) does not

depend strongly on the initial temperature T0 or the damp-
ing parameter b used to generate the packings, and we
focus on packings prepared using T0/Tm = 0.27 and b =
10−5. To generate mechanically stable repulsive packings,
we jammed the repulsive disks and polymers under circular
boundary conditions. Specifically, we initialize the repulsive
packings analyzed in Sec. III B and then apply sequential
affine compressions of 	φ = 10−3 followed by overdamped
energy minimization until reaching a target potential en-
ergy Vr/N = 10−14, where Vr = V rnb + V w for repulsive disks
and Vr = V rnb + V b + V w for repulsive polymers. Addition-
ally, underconstrained disks associated with zero-modes are
removed—rattlers in the case of repulsive disks and flippers
in the case of repulsive polymers. (See Sec. III D for further
details.) In Figs. 6(a) and 6(b), we show the density of vibra-
tional states D(ω) for packings of repulsive disks and packings
of repulsive polymers, respectively. As expected, D(ω) for
jammed packings of repulsive disks possess an anoma-
lous plateau at low frequencies rather than Debye behavior
[24]. Similarly, packings of repulsive polymers also display
a low-frequency plateau over the range 10−2 < ω < 10−1

in Fig. 6(b). However, there are further excess vibrational
modes in packings of repulsive polymers for ω < 10−2, which
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FIG. 6. The vibrational density of states D(ω) for jammed packings of (a) repulsive disks, (b) repulsive polymers, (c) attractive disks,
and (d) attractive polymers, colored by Vr/N (increasing from purple to yellow) for N = 128. The black dashed line defines the characteristic
frequency ω∗, where D(ω∗) = 10−1. Note the large low-frequency peak for packings of repulsive and attractive polymers in (b) and (d), which
arise due to quartic modes. Quartic modes are removed from D(ω) when calculating ω∗. (See Sec. III D.)

indicate the presence of quartic modes that are discussed
below in Sec. III D.

When the attractive interactions are weak, i.e., β = 10−5 as
discussed in Sec. III B, attractive disk and polymer packings
possess only small disk overlaps, Vr/N � 10−14, where Vr =
V rnb for attractive disks and Vr = V nrb + V b for attractive
polymers. We find that D(ω) for attractive disk and attractive
polymer packings with Vr/N � 10−14 possess no nontrivial
zero modes and a broad low-frequency plateau, similar to that
obtained for jammed, repulsive disk packings prepared with
comparable values of Vr as shown in Figs. 6(c) and 6(d). The
small peak at the lowest frequencies in packings of attractive
polymers indicates the presence of quartic modes.

When we compress repulsive disk and polymer packings
above jamming onset by increasing φ and thus Vr (from purple
to yellow), the plateau in D(ω) at low frequencies decreases,
as shown in Figs. 6(a) and 6(b) [25,26]. Effective compres-
sion of attractive packings can be obtained by increasing the
attractive depth β. In Figs. 6(c) and 6(d), we vary the attractive
depth by successively multiplying β by a factor of r ∼ 1.12 in
the range 10−8 < β < 10−1 followed by overdamped energy
minimization after each change in β. Increasing β gives rise
to concomitant increases in Vr and a loss of the low-frequency
plateau.

We quantify the anomalous low-frequency plateau in D(ω)
by identifying a characteristic frequency ω∗ at which D(ω∗)
falls below a small threshold. Here we use D(ω∗) = 10−1,
but the results are similar over a range of thresholds. In
Fig. 7(a), we show ω∗ as a function of Vr for packings of
repulsive disks compressed under circular boundary condi-
tions for several system sizes N = 64, 128, 256, 512, and
1024. Previous work has shown that under periodic bound-
ary conditions the characteristic plateau frequency scales as
ω∗N ∼ (PN2)1/2 at high pressures P [25,26,28]. Attractive
packings with no boundaries are at zero pressure, and thus
we plot their low frequency response against Vr instead of P.
Potential energy V and pressure P in repulsive systems have
a known scaling relation of P ∼ (V/N )1/2 [24]. Combining
these two scaling relations gives ω∗N ∼ (V N3)1/4, which is
plotted as black dashed line in Fig. 7(a) [39]. Additionally,
we show in Fig. 7(b) that compressing repulsive polymer
packings above jamming onset gives nearly identical results
for ω∗N versus VrN3 as found for repulsive disk packings,

when quartic modes are removed. This result indicates, at least
in the harmonic approximation, double-sided polymer bonds
do not strongly affect the low-frequency mechanical response.

Does the power-law scaling of ω∗ versus Vr still hold for
attractive packings as we increase β and thus Vr? In Figs. 7(c)
and 7(d), we show that increasing the attraction depth is
similar to overcompression of a repulsive disk packing, i.e.,
both lead to a decrease in the low-frequency plateau in D(ω)
and give rise to ω∗N ∼ (VrN3)1/4 for the finite-size scaling
of the plateau frequency. In Fig. 7, we achieved an effective
compression of attractive packings by increasing the attrac-
tive depth β, while fixing the attractive interaction range at
α = 1.5. In Sec. III E we address varying α as well as β and
find similar results.

D. Repulsive polymer packings are hypostatic
but effectively isostatic

Jammed packings of repulsive disks are known to be iso-
static, i.e., the onset of rigidity occurs when the number
of constraints (arising from interparticle and particle-wall
contacts) equals the number of degrees of freedom, which
controls the vibrational and mechanical response of jammed
packings [24,27,28]. For isostatic packings, the number
of contacts at jamming onset satisfies: N iso

c = 2(N − Nr ) +
f (d ) + 1, where Nr is the number of underconstrained rattler
particles, f (d ) indicates the number of unconstrained degrees
of freedom from the boundary conditions [e.g., f (d ) = 1 for
circular fixed boundaries in d = 2], and the +1 corresponds
to the particle size degree of freedom [24,40]. Rattler parti-
cles for packings of repulsive disks correspond to particles
with fewer than three contacts or particles where all con-
tacts occur on a semicircle. Rattler particles are identified
and removed iteratively. Previous studies have shown that
compressing jammed packings gives rise to an increase in
interparticle contacts, which in turn increases the charac-
teristic plateau frequency ω∗ [25,26]. In Fig. 8(a), we plot
	N = Nc + Nw − N iso

c versus VrN3, where Nc is the number
of interparticle contacts and Nw is the number of particle-
wall contacts. We show that 	N obeys power-law scaling
with Vr/N : 	N ∼ (VrN3)λ, where λ = 1/2 for VrN3 � 1 and
λ = 1/4 for VrN3 � 1. These results match those for the
finite-size scaling of the pressure dependence of 	N and shear
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FIG. 7. Characteristic plateau frequency of the vibrational density of states ω∗N versus potential energy VrN3 for jammed packings of
(a) repulsive disks, (b) repulsive polymers, (c) attractive disks, and (d) attractive polymers for several system sizes, N = 64 (circles), 128
(squares), 256 (upward triangles), 512 (downward triangles), and 1024 (stars) colored from blue to red with increasing system size. The
dashed line has a slope of 1/4.

modulus G for jammed packings of repulsive disks and
spheres [28,41], i.e., 	N ∼ G ∼ (PN2)μ, where μ = 1 for
PN2 � 1 and μ = 1/2 for PN2 � 1.

Previous studies have suggested that jammed packings
of repulsive polymers are isostatic [33,42]. However, one
must carefully identify “flipper” particles that have too few
contacts to be fully constrained, as well as quartic modes. We
find that jammed packings of repulsive polymers are in fact
hypostatic but are effectively isostatic when accounting for
flippers and quartic modes. Previous work identified flipper
particles as those with no nonbonded interactions [33,43].
Here we use (nonrotational) zero modes of the dynamical
matrix �ξ i to identify underconstrained flipper particles in
repulsive polymer packings. We successively remove the
largest contribution {ei

jx, ei
jy} to �ξ i until it is no longer a

zero mode. Each particle j with the largest contribution to
the zero mode is identified as a flipper particle. In Fig. 9(a),
the yellow-shaded particles are flippers since they only
have bonded contacts, one of their neighbors only has bonded
contacts, and they can collectively rotate without changing the
length of the bonds and without making additional contacts.
The red and cyan particles have no nonbonded contacts, but
their bonded neighbors have at least one nonbonded contact,
and so they are not flipper particles.

The red arrows in Fig. 9(a) indicate a quartic mode in a
repulsive polymer packing. The cyan particle has the largest
contribution to the quartic mode and its motion is perpendic-
ular to the approximately 180◦ bond angle. When we perturb
a packing by an amplitude δ along a typical eigenvector �ξ i of
the dynamical matrix, the change in potential energy 	V ∼ δ2

scales quadratically with the amplitude as shown in Fig. 9(b)
where V = V rnb + V b + V w. However, hypostatic packings
contain quartic modes, such that the change in energy 	V
for perturbations with amplitude δ along a quartic mode scale
as 	V ∼ δ4 [35]. In Fig. 9(b), we show the quartic scaling
for δ � δq, where δq ∼ P varies linearly with pressure, for
perturbations along the quartic mode given in Fig. 9(a).

Since the change in potential energy for perturbations
along quartic modes scales quadratically with the amplitude
of the perturbation for δ � δq, it can be challenging to identify
quartic modes. To count the number of quartic modes, we
decompose the dynamical matrix into two components, the
stiffness matrix H and stress matrix S, where M = H + S
[34,35]. The stiffness matrix only depends on the geometry
of the system (not the interaction potential or pressure),

Hkl =
∑
i> j

∂2V

∂ (�ri j/σi j )2

∂ (ri j/σi j )

∂�rk

∂ (ri j/σi j )

∂�rl
, (6)

FIG. 8. Excess contact number above isostaticity 	N = N ′
c − N iso

c versus potential energy VrN3 for packings of (a) repulsive disks (N ′
c =

Nc + Nw ), (b) repulsive polymers (N ′
c = Nc + Nw + Nb + Nq ), (c) attractive disks [N ′

c = Nc(ri j < rβ ) + Nb], and (d) attractive polymers [N ′
c =

Nc(ri j < rβ ) + Nb + Nq] as a function of system size, N = 64 (circles), 128 (squares), 256 (upward triangles), 512 (downward triangles), and
1024 (stars) colored from blue to red with increasing system size. Nc is the number of interparticle contacts, Nw is the number of particle-wall
contacts, Nb is the number of polymer bonds, and Nq is the number of quartic modes. The solid line indicates slope 1/2 and the dashed line
indicates slope 1/4. Error bars indicate one standard deviation in 	N .
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FIG. 9. (a) Jammed repulsive polymer packing showing the quar-
tic mode in (b) with red arrows for N = 64. Gray lines indicate
interparticle and particle-wall contacts. Black lines indicate the poly-
mer backbone. The large black circle that encloses the polymer
indicates the circular wall. Nonflipper disks are colored white. The
pair of yellow disks are underconstrained flippers. The cyan disk has
no nonbonded contacts and participates most directly in the quartic
mode. The red disk also has no nonbonded contacts but does not lead
to a quartic mode. (b) Change in potential energy 	V/N following a
perturbation with amplitude δ applied along an eigenvector of the
dynamical matrix for a jammed repulsive polymer packing corre-
sponding to a quadratic (gray solid line) and quartic mode (black
solid line). Gray dot-dashed and black dashed lines indicate slopes
of 2 and 4.

where k and l loop over all N particle coordinates. Previous
work has shown that quartic modes �ξ i in M have nonzero
eigenvalues ei at nonzero pressure; however, the same eigen-
mode yields H �ξ i = hi�ξ i, where hi = 0 [35]. Therefore, for
each repulsive polymer packing, we calculate the number
of quartic modes Nq = H0 − M0, where M0 and H0 are the
number of zero modes in the dynamical matrix and stiffness
matrix, respectively. We find that packings of repulsive poly-
mers are hypostatic at jamming onset with Nc + Nw + Nb <

N iso
c , where Nb is the number of polymer bonds. However,

the number of missing contacts Nm = N iso
c − Nc − Nw − Nb

equals the number of quartic modes Nm = Nq for each repul-
sive polymer packing. As shown Fig. 8(b), we find identical
finite-size scaling and collapse of the excess number of con-
tacts 	N versus VrN3 for packings of repulsive polymers and
packings of repulsive disks, where 	N = Nc + Nw + Nb +
Nq − N iso

c for packings of repulsive polymers.

E. Attractive disk and polymer packings are hyperstatic
but effectively isostatic

Above, we showed that repulsive packings are isostatic
at jamming onset and obey power-law scaling relations for
ω∗ and 	N versus VrN3. In addition, we find that attractive
monomer and polymer packings not only possess similar core
packing fractions as their repulsive counterparts, but also fol-
low the same power-law scaling relation for ω∗ versus VrN3.
Can attractive disk and polymer packings be viewed as effec-
tively isostatic as well?

Typical contact counting analyses consider a constraint
as the onset of any nonzero interaction between particles or
between a particle and a wall. Thus, for attractive systems
in Eq. (3), a contact could be defined as an interparticle
separation that satisfies ri j/σi j < 1 + α. With this definition,
packings of attractive monomers and polymers are highly
hyperstatic containing many more interactions than degrees
of freedom. However, previous studies have suggested that
weak long-range attractions are relatively unimportant for
determining the mechanical properties of attractive solids
[44]. Remarkably, using the attractive potential in Eq. (3),
we find that if we count contacts as those with interparticle
separations with ri j/rβ < 1, packings of attractive monomers
are effectively isostatic for small Vr , i.e., Nc(ri j < rβ ) = N iso

c ,
where N iso

c = 2N − f (d ) and f (d ) = 3 for the two uniform
translations and a single rotation that have no energy cost for
attractive packings with open boundary conditions. In Eq. (3),
rβ indicates a change in the interaction stiffness. For ri j/σi j <

rβ , |∂2V/∂r2
i j | ∼ ε, whereas |∂2V/∂r2

i j | ∼ k/ε ∼ β tends to
zero as β → 0 for rβ < ri j < rα . In Fig. 8(c), we show that
	N = Nc(ri j < rβ ) − N iso

c for attractive disks obeys the same
power-law scaling with VrN3 as found for packings of repul-
sive disks and polymers.

We have shown that if we define contacts for packings of
attractive disks as those with ri j < rβ , attractive disk packings
are effectively isostatic (for VrN3 � 1) and 	N versus VrN3

obeys similar power-law scaling as that found for isostatic
repulsive packings. However, do attractive packings with con-
tacts defined by ri j < rβ possess any zero-energy modes? To
address this question, we construct the stiffness matrix from
contacts defined by ri j/rβ < 1 in attractive disk packings. We
then calculate the stiffness matrix eigenvalues hi(ri j < rβ )
and compare them to the eigenvalues of the stiffness matrix
hi(ri j < rα ) using contacts defined by the full attractive po-
tential. We not only find that attractive disk packings with
contact networks defined by ri j < rβ are effectively isostatic,
but also that H (ri j < rβ ) has no nontrivial zero-energy modes,
hi(ri j < rβ ) > 0. We further show in Fig. 10(a) that for the at-
tractive disks the eigenvalues hi(ri j < rβ ) are nearly identical
to the eigenvalues hi(ri j < rα ).
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FIG. 10. The eigenvalues hi(ri j < rβ ) of the stiffness matrix
H (ri j < rβ ) for attractive packings with contacts defined by ri j < rβ

plotted versus the eigenvalues hi(ri j < rα ) for H (ri j < rα ) with con-
tacts defined using the full attractive potential for attractive (a) disks
and (b) polymers as a function of system size, N = 64 (circles), 128
(squares), 256 (upward triangles), 512 (downward triangles), and
1024 (stars) colored from blue to red with increasing system size.
The black dashed line indicates hi(ri j < rβ ) = hi(ri j < rα ).

Are packings of attractive polymers effectively isostatic
using the same definition of interparticle contacts as packings
of attractive disks? When defining contacts as ri j/rβ < 1,
some attractive polymer packings appear to be hypostatic
with Nc(ri j < rβ ) + Nb < N iso

c . For example, in Fig. 11(a), we
show an attractive polymer packing with Nc(ri j < rβ ) + Nb =
124 and N iso

c = 2N − 3 = 125 and therefore this packing is
missing a single contact. We find that the lowest nontrivial
eigenmode of the dynamical matrix M is very similar to a
quartic mode in a jammed repulsive polymer packing, where
the largest contribution to the mode is perpendicular to an
approximately 180◦ bond angle. For repulsive polymer pack-
ings, the number of quartic modes satisfies Nq = H0 − M0. In
attractive polymer packings with missing contacts, H0 = M0

FIG. 11. (a) Illustration of an attractive polymer packing with
N = 64 and β = 10−5. We highlight the quartic mode in (b) with red
arrows. The gray lines indicate contacts that satisfy ri j < rβ and the
black lines indicate the polymer backbone. Nc(ri j < rβ ) + Nb = 124
and N iso

c = 2N − 3 = 125 and therefore the packing is missing a
single contact. The cyan-shaded particle has no nonbonded contacts
with ri j < rβ and has the largest contribution to the quartic mode.
(b) Change in the total potential energy 	V/N following a per-
turbation with amplitude δ applied along the quartic mode of the
dynamical matrix in (a) for increasing attractive strength β (curves
shaded from blue to red). The gray dot-dashed and black dashed lines
indicate slopes of 2 and 4.

and Nq appears to be 0. However, we show in Fig. 11(b) that
when we perturb the attractive polymer packing in Fig. 11(a)
along the possible quartic mode of M, the change in the poten-
tial energy V = V anb + V b versus the perturbation amplitude
δ scales as 	Vr ∼ δ4 for δ > δq ∼ β2.

When we consider H (ri j < rα ) and M(ri j < rα ), we find
that Nq = H0 − M0 = 0 even for attractive polymer packings
that are hypostatic. However, we find that H0(ri j < rβ ) >

H0(ri j < rα ) for attractive polymer packings with missing
contacts. Therefore, for attractive polymer packings, we count
the number of quartic modes Nq as the number of nontrivial
zero modes in H (ri j < rβ ). When including these Nq quar-
tic modes, we find that 	N = Nc(ri j < rβ ) + Nb + Nq versus
VrN3 obeys the same power-law scaling and finite-size col-
lapse as packings of repulsive disks, repulsive polymers, and
attractive disks. [See Fig. 8(d).] While packings of attrac-
tive polymers are effectively isostatic, we also find that the
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FIG. 12. Characteristic plateau frequency of the vibrational den-
sity of states ω∗ plotted versus VrN3/α for attractive (a) disk and
(b) polymer packings and the excess contacts 	N plotted ver-
sus VrN3/α for attractive (c) disk [	N = Nc(ri j < rβ ) − N iso

c ] and
(d) polymer [	N = Nc(ri j < rβ ) + Nb + Nq − N iso

c ] packings and
with varying attractive ranges, α = 0.1 (circles), 0.5 (squares), 1.0
(upward triangles), 1.5 (downward triangles), and 2.0 (stars) colored
purple to yellow with increasing α for N = 256. In (a) and (b), the
dashed lines indicate slopes of 1/4 and in (c) and (d) the dashed and
solid lines indicate slopes of 1/4 and 1/2 respectively.

low-frequency eigenvalues of the stiffness matrix hi(ri j < rβ )
deviate from those hi(ri j < rα ) defined using the full attractive
potential [Fig. 10(b)]. This result indicates that quartic modes
in attractive polymer packings are more sensitive (compared
to the low-frequency stiffness matrix eigenvalues of packings
of attractive disks) to the addition of the weak long-range
attractions of the full attractive potential.

Are attractive disks and polymers still effectively isostatic
when varying the range of the attractive interaction α? We
change the attractive range in small steps, α = α0 ± 	α,
where α0 = 1.5 and 	α = 0.01 with each α increment fol-
lowed by overdamped energy minimization. In Figs. 12(a)
and 12(b), we show the scaling of ω∗N versus VrN3/α for
0.1 � α � 2 for packings of attractive disks and polymers
and find that ω∗N ∼ (VrN3/α)1/4 collapses the data for all
values of α. In Fig. 12(c) and 12(d), we show that packings
of attractive disks and polymers are also effectively isostatic
when defining contacts according to ri j < rβ for all α. For all
packings of attractive disks and polymers, 	N > 0 and 	N
versus VrN3/α obeys the same scaling relation as that found
for isostatic packings of repulsive disks and polymers.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

In this work, we studied the connection between the col-
lapse of attractive disk-shaped bead-spring polymers and the
onset of jamming in packings of repulsive disks and polymers.
This work was motivated by the fact that protein cores possess
similar packing fractions to those of jammed packings of
purely repulsive, disconnected amino-acid-shaped particles. Is

there a deep connection between attractive polymer collapse
and compression-induced jamming or is the similarity fortu-
itous?

First, we showed that for packings of attractive disk-shaped
bead-spring polymers to possess interior packing fractions
similar to those in jammed repulsive disk packings, they must
be quenched to temperatures much below the glass transition
temperature. To compare packings of attractive and repulsive
disks and polymers, we developed a method to compress
repulsive systems under open boundary conditions. We find
that the average core packing fraction of repulsive disk and
polymer packings under this protocol is similar to that gener-
ated by thermally quenching attractive disks and polymers.

Previous studies have shown that repulsive disk packings
at jamming onset are isostatic leading to an excess of low-
frequency modes in the vibrational density of states, with
a characteristic plateau frequency ω∗ ∼ 	N ∼ (VrN3)1/4,
where 	N is the excess contact number, 	N = Nc + Nw −
N iso

c , Vr is the repulsive contribution to the potential energy,
Nc is the number of interparticle contacts, Nw is the number
of particle-wall contacts, and N iso

c = 2(N − Nr ) + f (d ) + 1.
While repulsive polymer packings are typically hypostatic at
jamming onset with fewer contacts than degrees of freedom,
the number of missing contacts equals the number of quartic
modes Nq and we find that repulsive polymers are effectively
isostatic such that the excess contacts 	N = Nc + Nw + Nb +
Nq − N iso

c versus VrN3 obeys the same scaling form as that
found for packings of repulsive disks, where Nb is the number
of polymer bonds and N iso

c = 2(N − Nf ) + f (d ) + 1.
In overconstrained systems, the vibrational density of

states D(ω) → 0 in the low-frequency limit [24]. Here we
show that even though attractive disk and polymer packings
are highly hyperstatic due to longer-range attractive interac-
tions, they possess a plateau in the low-frequency region of
D(ω) and that ω∗ ∼ (VrN3)1/4. Since this power-law scaling
behavior for ω∗ versus VrN3 is similar to that for packings of
repulsive disks and polymers near jamming onset, it suggests
that packings of attractive monomers and polymers with weak
attractions are effectively isostatic. We find that if we define
contacts as nonbonded pairs with ri j < rβ , packings of at-
tractive monomers and polymers are effectively isostatic with
	N = Nc(ri j < rβ ) + Nq − N iso

c ∼ (VrN3)1/4, where N iso
c =

2N − f (d ). These results indicate that longer-range attrac-
tions provide an average compression force, but that the
mechanical properties are controlled by the stronger short-
range repulsive interactions.

Overall, we find that there is a deep connection between
the interior packing fraction, low-frequency regions of the vi-
brational density of states, and isostaticity in all four systems:
jammed packings of repulsive disks and polymers and ther-
mally quenched, collapsed attractive disks and polymers. Note
that we considered an interparticle potential with a discon-
tinuous jump in its second derivative, and the location of the
discontinuity corresponded to the definition of interparticle
contacts that yields effective isostaticity. In future work, we
will study interaction potentials where we can vary the mag-
nitude of the jump in the second derivative and the range over
which it changes to understand the parameters that control
whether attractive packings can be considered as effectively
isostatic. In addition, many biological polymers, such as
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proteins, have varying attractive strengths between monomers.
We anticipate that we will find similar results for polymers
with monomers that have varying attractive strengths, as
found here for monomers with uniform attractions. Varying
attraction strengths will cause more frustration during
polymer collapse and will be considered in future studies.

Here we established that for thermally quenched attractive
disk-shaped bead-spring polymers to obtain interior packing
fractions near values found for jammed packings of repulsive
disks and polymers, they must be cooled below the glass
transition temperature. Thus, the collapsed polymers we con-
sidered are glassy and the interior packing fraction can be
increased by decreasing the cooling rate [45]. Similarly, we
have already shown that the packing fraction at jamming onset
for packings of repulsive amino-acid-shaped particles spans
the range 0.55 < φ < 0.62, where the average core packing
fraction for protein x-ray crystal structures (〈φ〉 ∼ 0.55) is
only obtained in the limit of rapid compression and energy
minimization [16]. In contrast, the current view of the dynam-
ics of protein folding suggests that it is an equilibrium process,
akin to finding the global minimum in the potential energy
landscape [46–49].

Our work suggests that experimentally determined protein
cores can in principle reach packing fractions of φ = 0.62 and
yet we find that they always possess the rapid thermal quench
value of φ ∼ 0.55. Additionally, the approach developed here
suggests that isostatic arguments can be used to understand
the experimentally measured excess low-frequency content in
the vibrational density of states from x-ray scattering studies
of proteins [20–23]. In future work, we will generate static
packings of single proteins using an all-atom hard-sphere
model for proteins with stereochemical constraints (including
constraints on the bond lengths, bond angles, and peptide
bond dihedral angles ω) using compression or thermal
collapse with short-range attractive interactions, to determine
whether the cores in these model proteins can possess a
range of packing fractions. These single protein packings
will obey the geometric criteria of high-quality x-ray crystal
structures of proteins (i.e., no nonbonded overlaps and bond
lengths, bond angles, and backbone and side-chain dihedral
angles will obey the statistics found for protein structures
in the Protein Data Bank) and will identify the range of
mechanically stable packing fractions in protein cores.
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APPENDIX A: PACKING-GENERATION PROTOCOL

In this Appendix, we provide details for the packing-
generation process for all four systems: jammed packings of
repulsive disks, of repulsive polymers, of attractive disks, and
of attractive polymers. To initialize all four systems, we first
simulate liquid globule configurations of collapsed attractive
polymers. We then generate static packings using damped MD
simulations.

1. Preparing initial configurations via polymer collapse

To generate initial configurations, we simulate bead-spring
polymers with nonbonded attractive interactions over a range
of temperatures using a Langevin thermostat. We integrate
Newton’s equations of motion for each monomer position
�r j using a modified velocity-Verlet integration scheme with
timestep 	t = 0.01 [50]. We characterize the temperature-
dependent polymer configurations using the normalized
radius of gyration:

R̃g = Rg − Rmin
g

Rmax
g − Rmin

g

, (A1)

where Rmax
g and Rmin

g are the maximum and minimum radii
of gyration over the course of the simulation, shown in
Fig. 13(a) for N = 256 and averaged over 100 different initial
conditions. Polymers with attractive nonbonded interactions
undergo two distinct transitions as they are cooled from high
to low temperatures. At high temperatures, the polymer sam-
ples an excluded-volume random walk. As the temperature is
lowered, the attractive interactions overcome thermal fluctu-
ations, and the polymer collapses into a condensed droplet,
signaling the coil-to-globule transition. We fit a sigmoidal
curve to the normalized radius of gyration,

R̃g(T ) = 1

1 + eκ (T −Tm )
, (A2)

to identify the melting temperature Tm [51] at which R̃g(Tm) =
1/2 and where κ gives the transition width. By cooling the
polymer below Tm, we can induce a glass transition, where the
structural relaxation time τr of the monomers in the globule
diverges. We determine τr by calculating the self-part of the
intermediate scattering function,

Fs(q, t ) = 1

N

〈
N∑

j=1

ei �q·(�r j (t0+t )−�r j (t0 ))

〉
, (A3)

as a function of time t . The angle brackets indicate an average
over time origins t0 and directions of the wave number with
magnitude q = 2π/σmax. As shown in Fig. 13(b), at short
times, Fs(q, t ) ∼ 1 since the monomer positions are similar
to what they were at the time origin. Fs(q, t ) decays to
zero when the configuration at time t is uncorrelated with
the initial configuration. We define the structural relaxation
time τr using Fs(q, τr ) = 1/e, which increases rapidly as the
temperature decreases. We can estimate the glass transition
temperature Tg at which τr → ∞ using a power-law,
τr ∝ (T − Tg)−η (with η ≈ 2), or super-Arrhenius form,
τr ∝ eA/(T −Tg) (with A ≈ 10). Both forms give Tg/Tm ≈ 0.14,
as shown in Fig. 13(c). The results in Fig. 13 are shown for
an interparticle potential with attractive range α = 1.5 and
depth β = 10−5. We find qualitatively similar results for a
range of α and β. Increasing β shifts the melting curve to
larger values of temperature, while increasing α broadens the
coil-to-globule transition [52].

We first generate extended polymer configurations at high
temperature T � Tm. We then slowly cool the polymers to
temperatures T0 below Tm, i.e., T0/Tm = 0.43, 0.32, and 0.27,
but above Tg, as shown in Fig. 13(a) as vertical dotted lines.
We collect between 102 and 103 distinct sets of positions and
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FIG. 13. (a) Normalized radius of gyration R̃g plotted versus
temperature T normalized by the melting temperature Tm (vertical
solid black line). The dot-dashed line gives the fit of R̃g to Eq. (A2).
(b) The self-part of the intermediate scattering function Fs(q, t ) at
qσs = 2πσs/σmax averaged over all particles and time origins for sev-
eral T/Tm. The filled circles indicate the structural relaxation times τr

at which Fs(q, τr ) = 1/e. The colors from red to blue indicate high to
low values of T/Tm. The vertical dashed line in (a) indicates Tg below
which τr → ∞. (c) The structural relaxation time τr plotted versus
the deviation in the temperature from the glass transition T − Tg,
where Tg is found via a power-law fit (gray dashed line).

velocities of the polymers at each T0, with each set sepa-
rated by 10τr . We consider N = 64, 128, 256, 512, and 1024
to assess system-size effects. After generating the collapsed

polymer configurations, we follow the protocols below to gen-
erate zero-temperature packings of polymers with nonbonded
attractive interactions, disk packings with attractive interac-
tions, packings of polymers with only nonbonded repulsive in-
teractions, and disk packings with only repulsive interactions.

2. Packing-generation protocol for attractive
disks and polymers

To generate static packings of attractive polymers, we cool
liquid globules at T0 to zero temperature using damped MD
simulations, where we solve Newton’s equations of motion,

m�a j = −∂V/∂�r j − b�v j, (A4)

with dissipative forces proportional to the disk velocities �v j ,
potential energy V = V b + V anb, disk mass m and accelera-
tion �a j , and j = 1, . . . , N labels the disks. For computational
efficiency, each system is cooled using the reported damping
parameter b until the total force magnitude in the system
reaches Ftol = �N

j=1| �Fj | < 10−7, where �Fj = ∑
i

�fi j is the to-
tal force on particle j due to interactions with neighboring
particles i �fi j . The damping parameter is then increased to
b = 0.1 in the overdamped limit and the force tolerance is
decreased to Ftol < 10−15.

The damped MD simulations can be performed on at-
tractive disks (as well as attractive polymers) to investigate
the effect of the polymer backbone on the zero-temperature
packings. To generate static packings of attractive disks, we
initialize the system with the positions and velocities of the
collapsed polymer globules at T0 and then use damped MD
simulations [Eq. (A4)] to minimize the total potential energy,
except now V = V anb.

3. Packing-generation protocol for purely repulsive
disks and polymers

For systems with attractive interactions, we employ open
boundary conditions. Since static packings of purely repul-
sive particles possess nonzero pressures at jamming onset,
they must be confined to form jammed packings, e.g., using
periodic or fixed boundary conditions. To generate jammed
packings of purely repulsive particles in open boundary con-
ditions, we include a linear spring potential that connects each
particle to the center of mass of the packing, which is the
origin of the coordinate system,

V c(ri)

ε
= kc

2ε
r2

i (σi/σmax)ν, (A5)

where kcσ
2
s � ε is the compressive energy scale. (See Ap-

pendix B for a discussion of how the results depend on
kc/ε.) To generate zero-temperature packings of purely re-
pulsive particles, we initialize the system with the positions
and velocities from the collapsed globules at T0. We then
run damped MD simulations with V = V b + V rnb + V c for
purely repulsive polymers or V = V rnb + V c for purely re-
pulsive monomers until force balance is achieved. The radial
spring is then removed and the packings are again energy
minimized until Ftol < 10−15. For small damping coefficients,
packings of repulsive disks with similar sizes segregate and
crystallize. We thus include a factor of (σi/σmax)ν with ν = 2
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in Eq. (A5) to prevent size segregation during compression.
(See Appendix B.)

To calculate the structural and mechanical properties of
disk and polymer packings with purely repulsive interactions
as a function of the packing fraction above jamming onset,
we add a repulsive circular boundary with radius R via the
repulsive linear spring potential,

V w(ri )

ε
= 1

2

(
1 − R − ri

σi

)2




(
1 − R − ri

σi

)
. (A6)

R is initialized so that there are no disk-wall contacts. The
system is successively compressed by scaling the wall and
particle positions such that r′

i = ri(1 − 2	φ/φ) with each
compression step 	φ = 10−3 followed by energy minimiza-
tion using damped MD simulations with b = 0.1. The system
is compressed until it reaches a target total potential energy
per particle V0 < V/N < 2V0. If the system is compressed
above V/N > 2V0, then the previous particle positions and
boundary radius are reinitialized, and the system is com-
pressed by 	φ/2 and energy minimized. The static packings
were prepared over a wide range of potential energies per
particle, 10−13 � V0 � 10−2.

4. Core packing fraction

To analyze the structural properties of the interiors of static
packings, their surfaces must first be identified. To do this,
we adapt and apply an algorithm first proposed for finding the
surfaces of proteins in solvent from Lee and Richards [53].
In the case of disk and polymer packings in open boundaries,
we place a probe disk of diameter σp on the “anchor” disk
that is furthest from the center of mass of the packing. We
rotate the probe around the anchor disk in angle increments
of 	θ = 0.1 radians and check for overlaps with neighboring
disks. If a new contact is made with the probe disk, then the
new contacting disk becomes the anchor disk. This process is
repeated until the probe disk returns to the initial anchor disk.

The size of the probe will determine which disks are la-
beled as core and thus σp affects the average core packing
fraction 〈φ〉. In Fig. 14, we plot 〈φ〉 versus σp for N = 256
attractive polymer packings. For large probe sizes, similar in
size to the largest disk in the system, the core packing fraction
decreases significantly as more surface-like (noncore) parti-
cles are included in the average. The core packing fraction
plateaus as σp � 0.4. The typical probe size used to study pro-
teins is the diameter of a water molecule σp ∼ 2.8 Å, whereas
the maximum diameter of an alanine residue is 6.6 Å, which
yields the ratio, σp/σs ∼ 0.43. In the studies in the main text,
we chose a similar ratio σp/σs = 0.1.

After identifying the surface disks of a given configuration,
a radical Voronoi tessellation is performed on the disk centers
within a square box with an edge length exceeding the largest
extent of each packing [54]. The core packing fraction for a
particular configuration is defined as

φ =
∑Nc

i=1 πσ 2
i

/
4∑Nc

i=1 ai

, (A7)

where Nc is the number of core disks and ai the area of the
Voronoi polygon surrounding the ith core disk. Due to the

FIG. 14. The average core packing fraction 〈φ〉 plotted versus
the ratio of the surface probe diameter to the smallest disk diameter
σp/σs for packings of attractive polymers with N = 256, b = 10−5,
and T0/Tm = 0.27. The vertical dashed line indicates σp/σs ∼ 0.43,
which is the ratio of the diameter of a water molecule to an alanine
residue.

small probe radius, all of the core disks have closed Voronoi
cells and so their areas do not depend on the enclosing box
size.

APPENDIX B: GENERATING AMORPHOUS PACKINGS
OF REPULSIVE PARTICLES IN OPEN

BOUNDARY CONDITIONS

To generate static packings of repulsive disks and polymers
under open boundary conditions, we apply an external central

FIG. 15. The average hexatic order parameter 〈|ψ6|〉 plotted ver-
sus the number of Voronoi cells Nν between each disk and the closest
surface disk for varying exponents ν (increasing from purple to
yellow) that control the strength of the bias factor of the compression
force for packings of repulsive disks with N = 256 prepared using
b = 10−5. As a comparison, we also show results for packings of
attractive disks prepared at the same value of b (gray squares).
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FIG. 16. The average core packing fraction 〈φ〉 of packings of
repulsive disks plotted as a function of kc/ε using N = 256 and b =
0.1.

potential V c in Eq. (A5) for all disks in the packing. With this
central potential and in the limit of large damping paramaters,
repulsive disk and polymer packings are highly disordered.
However, with low damping parameters, thermal fluctuations
can induce size segregation in packings of repulsive disks,
with small disks slipping past large disks, which leaves only
large disks on the surface and gives rise to crystallization.
Therefore, we add a bias factor (σi/σmax)ν to the compression
force, such that larger disks feel larger compression forces.
The exponent ν controls the strength of the bias factor.

As shown in Fig. 5(b), attractive disk and polymer packings
do not size segregate and therefore we can calibrate the value
of ν by comparing the structural properties of repulsive disk
packings to those of attractive disk and polymer packings. In
Fig. 15, we plot the average hexatic order parameter 〈|ψ6|〉
[Eq. (4)] versus the number Nν of Voronoi cells between a disk
and the surface as a function of ν for packings of repulsive
disks. As ν increases, the hexactic order decreases strongly for
all values of Nν . However, the similarity between the repulsive
and attractive disk packings decreases when ν � 2.5. There-
fore, we use ν = 2 for preparing all repulsive disk packings in
these studies.

We also studied the influence of the spring constant kc/ε

on the core packing fraction in packings of repulsive disks.
The spring constant kc controls the effective rate of compres-
sion, which is known to influence the structural properties
of jammed packings [24]. In Fig. 16, we plot the average
core packing fraction 〈φ〉 for 100 repulsive disk packings
for N = 256 and b = 0.1 versus kc/ε. When compressing

FIG. 17. The average core packing fraction 〈φ〉 from damped
MD simulations of attractive polymers initialized at T0/Tm = 0.43
(circles with dashed lines) and 0.27 (squares with dashed lines) plot-
ted versus the damping parameter b when void regions are identified
using probe diameters, 2.2 � σp/σs < 1 (where purple to yellow
indicates increasing size), for N = 512. Core disks adjacent to void
regions are not included in the calculation of 〈φ〉.

with large kc/ε, the repulsive disk packings tend to be less
densely packed and the packing fraction reaches a plateau for
kc/ε � 10−4. Therefore, we selected kc/ε = 10−4 to generate
all repulsive disk and polymer packings.

APPENDIX C: IDENTIFICATION OF VOID REGIONS

The core packing fraction for collapsed, attractive poly-
mers is minimal for high damping parameters b and high
initial temperatures T0. We find that these collapsed structures
possess large void regions surrounded by regions that are
densely packed. To identify the void regions, we test each
interior disk to determine whether a probe disk of diameter
σp can be placed at its edge without causing any overlaps.
If the probe can be placed without causing overlaps, then
we remove that disk from the list of core disks. In Fig. 17,
we show that when we remove core disks that are near void
regions (by choosing σp/σs = 1), the core packing fraction
〈φ〉 is no longer strongly dependent on T0 for high damping
parameters. Since the collapsed structures in the low damping
limit do not possess void regions, 〈φ〉 does not depend on T0

or σp for small b. Thus, aside from void regions, the initial
temperature has only a minor effect on the packing fraction of
dense core regions of collapsed, attractive polymers.
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