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Linear stability analysis of a vertically oscillated granular layer
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(Received 24 May 1999

We present a linear stability analysis of an oscillating granular layer, treating it as an isothermal incom-
pressible fluid with zero surface tension, which undergoes periodic collisions with and separations from an
oscillating plate. Because the viscosity of the granular layer is unknown, we use the experimental value of the
critical acceleration for the transition from a flat to patterned layer as input for the theory, and use the analysis
to calculate the granular viscosity and the wavelength of the most unstable mode. The wavelength compares
favorably with the experimental pattern wavelength. Further, we find that the wavelengths are controlled by the
viscosity of the granular laye[S1063-651X99)11112-7

PACS numbes): 45.70.Mg, 45.70.Qj, 47.26:k, 05.20.Dd

[. INTRODUCTION even for accelerations of over 4(012,21]. For the granular
layer, each plate-layer collision excites random motion of the
Dissipative systems that undergo instabilities from uni-grains, called granular temperature in analogy to random mo-
form to patterned states when driven from equilibrium arelecular motion; inelasticity of granular collisions subse-
ubiquitous[1]. When oscillated vertically, both a layer of quently damps this motion. Therefore, unlike the temperature
liquid and a layer of macroscopic grains will undergo anof the liquid, the granular temperature varies both spatially
instability from a flat upper surface to a pattern of subhar-and temporally. The liquid layer is incompressible; the
monic standing waves at a critical value of the vertical ac-granular layer changes in volume throughout the cycle. Fi-
celeration[2,3]. In each case, observed patterns includenally, the variations in density and temperature lead to varia-
stripes, squarg#,2,5,4, hexagon$2,5,6), and localized pat- tions in the thermal conductivity and viscos[82—-27, or to
terns[7-9]. The instability of the shaken liquid layer, called variation in the transport of granular temperature and mo-
the Faraday instability, can be theoretically attacked througimentum through the medium.
a linear stability analysis of the Navier-Stokes equations Furthermore, the continuum equations of motion for
[10,11], vielding critical accelerations and pattern wave-granular fluids lack the stature of the analogous Navier-
lengths in excellent agreement with experimgth—12. A Stokes equations, which describe the motion of molecular
number of models have been proposed for the oscillatefluids. The granular continuum equations have been derived
granular layef13-15, but their ad hoc nature makes quan-from kinetic theory only in the limit of small inelasticity
titative comparison to experiment difficult. [28,23,24,29,3) and have been subjected to very few ex-
The pattern wavelength as a function of frequency hagperimental[31-33 or numerical test§34,35,27. However,
been experimentally measur¢d,16,3,17 in the granular the striking similarity to Faraday waves suggests that an
system, as shown in Fig. 1. Only the theory by Eggers an@nalysis similar to that for Faraday waves would be fruitful.
Riecke[18] has been able to produce results that comparé&urther, the fact that secondary instabilities of stripe patterns
well with experiment, but the equations that they use arén the granular layer are the same as those seen in continuum
phenomenological, and contain a surface diffusion term thasystemq20] and the finding from simulations that the par-
has no clear physical analog. ticle velocity distributions are nearly Gaussig®6] both ar-
Although some of the phenomenology of Faraday patterngue in favor of a continuum description.
and the patterns in granular media are similar, several sig- We report on a linear stability analysis of a simplified
nificant differences make analysis of the granular system difversion of the granular continuum equations of motion. To
ficult. Collisions between individual grains, unlike the analo-produce a tractable problem, we consider only the most im-
gous collisions between molecules of the liquid, are stronglyportant of the differences between oscillated liquids and
inelastic and purely repulsive. Surface tension, which actgranular media. In particular, we shall examine the linear
along with gravity as a restoring force for Faraday waves, isstability of an isothermal, incompressible fluid with zero sur-
absent in granular waves. Because neither surface tensidace tension, but which is allowed to leave and recollide with
nor air pressure hold the granular layer to the oscillatingthe oscillating plate. While the variations in granular tem-
plate, the plate accelerates away from the layer whenever thgerature and density are bound to play a role, only the
plate’s acceleration is downward and larger than the accektrength and timing of collisions, as incorporated into a
eration due to gravityg. At a subsequent time, the free- model that treats the layer as a single inelastic ball, have
falling layer collides sharply with the plate. Figure 2 displaysbeen demonstrated to play a role in the stability of the flat
a time series of this motion, as seen in molecular dynamictyer[2]. Further, the reductions outlined allow us to appro-
simulations, which agree with experimental results for thepriate the method that Kumar and Tuckernjaf] and Ku-
types and wavelengths of patterns obtaih#@,20. In con-  mar[11] applied to the Faraday instability. Our analysis fol-
trast to this sequence of free flights alternating with violentlows that of Ref.[11] closely, except that we allow the
collisions, a liquid layer remains in contact with the plate acceleration felt by the layer to be a more complicated func-
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FIG. 1. Nondimensionalized wavelength versus frequency for
experimen{17] above onsetdoty and the prediction of linear sta- FIG. 2. This time series shows the dynamics of a granular layer
bility theory (line) assuming that the critical acceleration for the over one oscillation of the plate, which is shown as a solid black
onset of waves is 2db The experimental data are for bronze bar. Each picture is separated in time by one-fourth of a period.
spheres with diameter 0.165 mm and layer depths between 3 and 3§itially, the layer is carried upward on the moving plate. The plate
particle diameters. then accelerates downward, leaving the layer in free fall. Finally,
the layer collides with the plate and begins its upward ride. The

tion of time than the cosf) that is appropriate for Faraday dotted line denotes the equilibrium position of the plate. For this
waves. simulation,I'=2.0 andf=0.3

with the loss of temperature due to inelastic collisions. In
actuality, dissipation lags production, so that a large spike in
With the assumptions that particles are nearly elastic anéhe temperature occurs at each plate colli$®ri. However,

that single particle distribution functions are nearly Gaussthe duration of this large variation is only a fraction of the
ian, kinetic theory has been used to derive continuum equépscillation cycle. Similarly, the density varies slowly and the
tions of motion for rapidly flowing granular media from the layer expands in a nearly uniform fashion in its free flight,
Boltzmann-Enskog equation for inelastically colliding hard followed by a rapid compression when the layer hits the
sphereg28,23,24,30 plate. With these simplifying assumptions, and the supposi-

tion that the external force acts only in the vertical direction,
/ the equations of motion reduce to

II. DEFINITION OF THE MODEL

AV (p'u)=0 &
_ -(p u)=0,
at’ V'.u' =0, (4)
ou’ p' (duu’ +u'-V'u)=—V'P' +u'V'2'-G'(t')z
p/?_i_p/ur'vlu/:_vl.Er_‘_G/(tr)’ (2) (5)

We nondimensionalize the equations of motion with the
aT’ depth of the layeH, the acceleration due to gravity and
P'?JFP'U"V'T': -V'-q'=P"E'—9', (3 the densityp’, so that Eqs(4) and(5) become

V-u=0, (6)
wherep’ is the mass densityy’ is the continuum velocity,

P’ is the pressure tensdg,’(t') is a time dependent external
force, T’ is the(granulaj temperatureq’ is the heat flux;y’

is the temperature loss rate due to inelastic collisions, antthe nondimensional viscosity, or inverse Reynolds number,
E/,=3(du/ +o;u). Primed quantities are dimensional; is given byv=pu'/p’ JHg.

unprimed quantities will be dimensionless. Constitutive rela- We choose a frame of reference in which the layer is at
tions for P’ andq’ are given by Newton’s stress law and rest. Fixingz=0 to the initially flat upper interface of the
Fourier's heat law, with dynamic viscosity’(p’,T’') and  fluid, the base state becomes a velocity field of zero. Linear-
thermal conductivity<’(p’,T") provided by kinetic theory. izing around this state yields

These transport coefficients are functions of the thermody-

du+u-Vu=—-VP+rV2u—G(t)z 7

namic state of the layer, so they will in turn depend upon the V.u=0, (8
forcing parameters; as we shall see, the same layer may have

different viscosities at different frequencies. Because the du=—VP+1V2u—G(t)z (9)
equations are compressible, the presdRifds given by an

equation of state. The functionG(t) here describes the effective gravity felt by

We simplify these equations by assuming that the granuthe layer as it rests on the plate, flies from it, and recollides
lar layer is isothermal and incompressible. The assumptiomith it.
of constant temperature is tantamount to exactly balancing Following the fluid case, we will look for instabilities of
the production of temperature due to collision with the platethe upper surface, which has heidffk,y,t). In the granular



7212 C. BIZON, M. D. SHATTUCK, AND J. B. SWIFT PRE 60

case, we might also allow the bottom surface to go unstableequation for the vertical velocity, Eq§l2) and (13) are the
since it is free for part of each cycle. However, to simplify stress free boundary conditions at the bottom boundary, Eq.
matters, we assume that the bottom surface stays fixed at(14) is the condition on the tangential stress at the top sur-
= —1. The velocity of the top surface is given by the verticalface, and Eq(15) the condition on the normal stress at the
velocity component,w, at the top surface, i.e., at top surface. Finally, Eq(16) gives the evolution of the free
=/(x,y,t). Taking the curl of the curl of Eg. 9 gives the surface, required for Eq15).
equation of motion fomw
IV. FLOQUET MODES
(9—vV?)V2w=0. (10)

Following [10,11], we use Floquet analysis, i.e., we as-
Note that although kinetic theory predici$p,T), our sim-  sume thatf can be written as
plifying assumptions removg and T from the problem, so

that we can no longer use the kinetic theory prediction to _ (stiamt Inet
determinev. {=e n;w e, 17)

o

IIl. BOUNDARY CONDITIONS where s and a are both real, andv is the dimensionless
angular frequency of oscillation. For harmonic response,
For liquids, the boundary condition at=—1 is no slip, — 0, While for subharmonic responses= ;.

since the liquid is in contact with a solid plate at all times, _ ASSuming thatw can be similarly expanded, Eq16)
but for the granular case, the no-slip boundary condition iJiVes & relation between the, and£,,, namely that
not appropriate. The granular layer leaves the plate; while
the bottom surface is free, stress-free boundaries should ap-
ply. Furthermore, the interactions between fluid moleculesThe evolution equatiofiEq. (11)] becomes an equation for
and surfaces that produce the no-slip boundary conditiongachw,,,
are different from the interactions between grains and the

Wplz—o=[s+i(a+nw]f,. (18

plate. Any surface is rough on the molecular level, while the (95~ k?) (9,7~ 05)Wn(2) =0, (19
plate is smooth on the scale of grains. Fluid molecules may . _
be adsorbed onto the surface, and re-ejected with a velocity gn=K+[stiw(a+n)]/v, (20

that is uncorrelated with their old velocity, but no such ther-

malization applies to encounters between grains and th@’hICh has the general solution

plate. In general, granular media can exhibit a slip velocity at w,(2) =P, costikz)+ Q, sinh(kz) (22)
walls [38]; we simplify matters by assuming that at the bot- " : "

tom surface of the granular layer, stress free boundary con- + Ry coshq,z)+ S, sinh(q,2).

ditions always apply, so that botk and 7, w equal zero at (22
z=—1.

At the top surface{(x,y,t), all components of the stress The boundary conditions ow, at the top surface, Eqsl4)
tensor vanish. The tangential components because they a#8d(18), give
continuous across the interface, the normal component be- P.= w(2+ KA ¢ 23)
cause the surface tension of the granular layer is zero. These n= V{0 n
conditions plus incompressibility, and the assumption that __ 2

. . ) R,=—2vk?¢,, (24)
the vertical velocity may be written as
and the boundary conditions Eq42) and(13) at the bottom

_ (kyxky) (
W=w(z,t)e"nTEY, surface give

wherek is the dimensionless wave number, lead to the sys- Q,=Rcoth(q), (25)
tem of equations whose stability we shall study:
S,= P coth(k). (26)
[0—v(d,— kz)](azz_ kz)WZOy (11
Finally, substitution ofw, into Eq. (15) yields
W|Z:*l:0! (12)

v? coth( g K[ (K*+03) = 4k%0n12,=[ — G(O)K*¢],,
07zzW|z=fl:Ov (13 (27)
which will be transformed into an eigenvalue equation.

(9, W+ K?W)|,— =0, (14
’ ) V. ACCELERATION OF THE LAYER
[(0r— v+ 3vk?) I W], o=k {G(1), (15) AND THE INELASTIC BALL MODEL
HE=W]|,_¢. (16) For Faraday waves;(t)=1—T cos(t) so that the right
hand side of Eq(27) simply couples mode to modesn
Except for the absence of surface tension, the forra @), —1 andn+1; the more complicated dynamics of the granu-

and the lower boundary conditidiEg. 13], these equations lar layer lead to a more complicated versionGft), as seen
are exactly those of11]. Equation(11) is the evolution in Fig. 3. When the layer is in free flight, it feels no effects of



PRE 60 LINEAR STABILITY ANALYSIS OF A VERTICALLY ... 7213

3001 ' ' ' ; Ve=Aw o 0ton) = V(tosr) (ton—tofs)- (32)

: ] While the inelastic ball model oversimplifies the dynam-
2001 1 ics of the layer{3], bifurcations in the inelastic ball model
i closely correspond to experimentally observed bifurcations
. in the vibrated granular layd#]. Further, these transitions
100 1 depend only upof’, not uponw, just as in experiment. This
; ] success justifies the supposition that the sequence of colli-
J sions is the determining factor in the stability of the flat state.
(1] . ; L
0.0 0.5 1.0 1.5 2.0

uT VI. DERIVATION OF THE EIGENVALUE EQUATION

Av/(go)”®

FIG. 3. Vertical momentum transfer from the bottom plate to ~ Before expandings(t), we rewrite it as
particles per 1/1000 of a cycle. The momentum transfer is scaled

_ 5, r
with the gravitational acceleration and the particle diameter G()=1+G"*+I'G, (33
while time is scaled with the oscillation period These data are h
from a simulation of 6000 particles &t=2.1, H/o=17 where
G2¥=G’= x(t,ton torr), (34)

gravity, when on the plate it feels-1I" sin(wt), and when it
hits the plate, it feels a strong acceleration. In the lab frame, G'=— x(t,ton tosr)SIN wt). (35)
the velocity of the layer is being rapidly changed from its
negative downward velocity to the upward velocity of the Now, assume that each of these can be expanded into Fourier
plate. modes,
We let

a__ aqiol
G(1)=x(t,ton,tor) [1—T sif(wt) ]+ G(t,tr), (28) Gr=2 G, (36

wheret,,, andt,¢ are the times at which the layer makes andThe products on the right hand side of Eg7), then, are
loses contact with the platg,t,a,b) is equal to 1 fora<t

<b and 0 otherwise, an@°(t,t,,) is a sharply peaked func- Ger= G gl ont 3
tion att,, that describes the acceleration of the layer due to ¢ ; % n-mém€ " 37
the collision. Specifically, if the relative velocity between the

plate and the layer is., we modelG?(t,t,,) with Equation(27) becomes

Ve . Anmém=TBnmdm, (38)

S — _[(t_ton)/T]
G (tlton) \/;Te 1 (29) Where
— 2 2 2\2_ 3

which integrated over time provides the impulsgto the Anm= Snnl 1+ (v/K) coth(q,){(k“+a;)“—4k>dn}]
layer. The parameter gives the width of the collisional L GoX (39)
spike, and is chosen to BE/100, whereT is the period of neme
oscillation. The values dof,,, tots, andv. are not given by Bm= _Gg_m_ (40)

the present theory; to get them we invoke the inelastic ball

model[2]. According to this model, the layer effectively acts To cast Eq.(38) as an eigenvalue problem, we must either
like a single particle with zero coefficient of restitution. It invert A or B. In Refs.[10,11], A is inverted, since it is
leaves the plate whenever the acceleration of the plate equal§agonal in the absence bf*. Our A is more complicated,

—g, so thatt,ys is defined from so instead we invemB. This inversion is simpler, because
. is a Toeplitz matrix, i.e., thgth row of B is just the first row,
—I'sin(wtorr)=—1. (300 shifted byj spaceg39]. Then,
From that time, the inelastic particle travels parabolically Momém=1¢n, (41

until it strikes the plate at,,: hereM = B-1A
whereM = .

Z(torr) +V(torr) (ton—tor) — (1/2)(ton_toff)2
=Asin(wty,), (31

VIl. SOLUTION METHOD

In the fluid caseM is a function ofs, «, k, v, andw.
wherez(ty:;) andv(ty¢s) are the height and velocity of the To find the criticall’, sis setto 0, corresponding to marginal
inelastic particle as it leaves the plate, alds the dimen-  stability, anda to either O or 1/2. For a fixed, k is varied
sionless amplitude of the plate’s oscillation. Equati@d) and the eigenvalues &f are found. This results in the mar-
must be solved numerically far,,. Finally, the collision ginal stability curve in thd”—k plane; the lowest point on
velocity is the relative velocity between the plate and the balthis curve corresponds to the criticBl and k for that fre-
when the two collide: quency. Varyingw leads to the onsdt () and the disper-
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FIG. 4. Marginal stability curves, foro=3.0 and +: v FIG. 5. Log-log plot of nondimensionalized wavelengths vs
=0.2, ¢: v=0.176. Both calculations include 50 modes. The v/f. The solid line has slope 1/2, corresponding to viscous wave-
solid line is the consistency conditiofi,=2.5. lengths.

sion relationk (w). Because the indices dvl range from  yesponse in our analysis, we performed runs with
—o 1o «, the expansion must be truncated, but because of£0,1/2, v=1.41, andf=0.1, which is the lowest frequency
the simple form of the acceleration for the fluid case, only aye investigate. Even for this low frequency, the critical ac-
few modes must be kept to achieve accurate results. celeration for the onset of harmonic waves is a factor of 50
In the granular case, the situation is somewhat lessigher than that for subharmonic waves, so that only the

straightforwardM depends on not only, «, k, v, andw,  subharmonic response must be studied for higher
but also onv,, t,,, andtys;, which in turn depend off'.

Furthermore, we don’t know the viscosityfor the granular

layer, which will presumably depend in some way on the VIll. RESULTS AND DISCUSSION

external control parametei$ and w. Figure 1 displays the dimensionless wavelength
Rather than taking as an input, and using it to calculate =\’'/H as a function of dimensionless frequendy
I'c and the dispersion relation, we will talle, as a given, = (w/2m) for experimen{17] at fixedI'=3.0. On the same

and use it to calculate and the dispersion relation. In ex- plot, the wavelengths of the most unstable made2m/k,
periments, the initial onset to patterns occurs néar2.5.  for the model described above are shown. Given the amount
There is slight dependence an but we will suppose that of approximation involved in the model, the agreement is
I';=2.5 for all w. remarkable. At high and low frequencies the model system-
The critical v andk will be functions ofw. For a givenw, atically underestimates the wavelengths, suggesting that the
we use the inelastic ball model to calculdtg, tors, and  functional form is probably incorrect, but note that no free
V¢, assumind’=2.5. From these, the Fourier coefficients of parameters were used in fitting the data. The deviation at
the G* are calculated; theA andB, assuming a givem, and  high frequency is probably not due to particle size effects,
s=0 anda=1/2, corresponding to marginal stability of sub- since for the deepest experimental layers in Fig. 1, the wave-
harmonic waves. The numerical recipe ctoef88] inverts lengths are still about 60 particle diameters. The model pre-
B, and calculate®!. Then, the eigenvalues ®fl are calcu- dicts the most unstable wave number at onset, but Fig. 1
lated by the routine zgeev, a routine from the linear algebr&éompares to data above onset, because those are the data
packagecLAPACK [40], which calculates the eigenvalues of a available. Because the final state after a hysteretic transition
square nonsymmetric complex matrix. is finite amplitude, comparison to a wavelength derived from
These eigenvalues produce, by varylgga marginal sta- linear theory may be misleading. However, experiments
bility curve in thel’-k plane; see Fig. 4. The lowest point on show that the wavelength depends only weakly updi 7],
this curve again defineF.. We have already assumed a which determines the distance above onset.
givenv,, tys, andty,, so thatl'. is the acceleration ampli- Because this model is isothermal, the dissipative proper-
tude between,;; andt,,. The physical condition thdt, be ties of the granular media, assumed to be crucial in other
the samd” that produced the parameters from the inelasticcontinuum models, enter only indirectly. Rather, the forma-
ball model now enters as an extra condition. To satisfy thidion of waves is opposed by the action of viscosity, as in the
condition, we varyy until I is within 1% of the assumed liquid case. As seen in Fig. 5, the wavelength in the model
critical I'. nearly scales as a viscous lengtfi/f. As expected, the
As in the fluid case, only a fixed number of modes areviscosity itself scales with the oscillation frequency; see Fig.
kept, but due to the rapidly varying’, we must keep many 6. At low frequenciesy1/f; above f~0.45, the scaling
more. Results with 30 modes and 50 modes differ by lesshanges tov>1/f3. The wavelengths, then, scale a$ &t
that 1%, while results with 50 and 100 modes differ by lessow f, and cross over to 17 for higherf.
than one part in 10 For all subsequent results, we ude Although indirect, the inelasticity of grains does play a
=50. role in the formation of these patterns. Inelasticity between
For Faraday waves at low frequencies, the response of thgrains causes a layer to condense, even in the absence of
layer to oscillation may be harmonic, rather than subharsurface tension. Because collisions are inelastic, the layer as
monic[11]. In experiments on granular media, only subhar-a whole is strongly inelastic in its interaction with the plate,
monic response has been observed. To check for harmonapproximating a single inelastic ball. Finally, the temperature
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The crossover at=0.45 occurs wher/v/f~1, or when
the dimensional viscous length,, is approximately equal to
the depth of the layer. Assuming tht may depend upon
H, g, andf’, we find dimensionally that

lycHPg =Pt 2(p—1), (42)

1.00F

where B cannot be determined with dimensional analysis.
I ] For low frequencied,,>H, and the kinetic theory argument
0.01 , , above impliesp=1/2. As the frequency increases, akjd
0.1 1.0 becomes smaller thaH, it also becomes independent laf
f For 3=0, Eq.(42) implies thatvef~3, which is the high
FIG. 6. Nondimensional log-log plot of viscosity vs frequency. frequency scaling.
The solid lines are fits to the high and low frequency regions and From the outset, the model assumed that the granular
have slopes-3.0 and— 1.0, respectively. layer was incompressible and isothermal, that the bottom
surface remains flat, and that stress-free boundary conditions
in the layer is controlled through a balance between produc2® réasonable. Any or all of these assumptions may be re-
tion due to plate collision and loss due to inelasticity. TheSPOnsible for the deviations from experiment. However, the
temperature controls the granular viscogi84], which in ~ near agreement W|th_ experiment suggests that these eff_ects
turn controls the pattern wavelengths. are indeed of lesser importance, when compz_irgd to the tim-
The low frequency scaling of the viscosity is consistent"d @nd strength of the violent layer-plate collisions.
with kinetic theory ideas. The collision velocity scales with
Af«I'/f. AtfixedT", v < 1/f. If we suppose that the average
temperature scales with the collision velocity squared, and We thank Harry Swinney for useful discussions and for a
that the viscosity scales witdT, we find thatvec1/f. This  critical reading of this manuscript. C.B. also thanks H.
argument relies on assuming that the average density of tHeiecke and L. Tuckerman for interesting and useful discus-
layer is fixed asf varies, but this assumption is probably sions. This work was supported by the Engineering Research
flawed. As frequency increases, the layer appears more corrogram of the Office of Basic Energy Sciences of the De-
pact. partment of Energy.

ACKNOWLEDGMENTS

[1] M. C. Cross and P. C. Hohenberg, Rev. Mod. PI8&.851 [17] P. B. Umbanhowar, Ph.D. thesis, University of Texas at Aus-

(1993. tin, 1996.
[2] F. Melo, P. B. Umbanhowar, and H. L. Swinney, Phys. Rev.[18] J. Eggers and H. Riecke, Phys. Revb& 4476(1999.
Lett. 75, 3838(1995. [19] C. Bizon, M. D. Shattuck, J. B. Swift, W. D. McCormick, and
[3] T. H. Metcalf, J. B. Knight, and H. M. Jaeger, Physic&236, H. L. Swinney, Phys. Rev. Let80, 57 (1998.
202 (1997. [20] J. R. de Bruyn, C. Bizon, M. D. Shattuck, D. Goldman, J. B.
[4] F. Melo, P. Umbanhowar, and H. L. Swinney, Phys. Rev. Lett. Swift, and H. L. Swinney, Phys. Rev. LeB1, 1421(1998.
72, 172(1994. [21] C. L. Goodridge, W. T. Shi, H. G. E. Hentschel, and D. P.
[5] A. Kudrolli and J. P. Gollub, Phys. Rev. 87, 133(1996. Lathrop, Phys. Rev. B6, 472 (1997.
[6] D. Binks and W. van de Water, Phys. Rev. Let8, 4043 [22] J. T. Jenkins and M. Shahinpoor, Mechanics of Granular
(1997. Materials: New Models and Constitutive Relatipreslited by
[7] P. Umbanhowar, F. Melo, and H. L. Swinney, Natyt®n- J. T. Jenkins and M. SatakElsevier Science Publishers B.V.,
don) 382 793(1996. Amsterdam, 1983 p. 339.
[8] O. Lioubashevski, H. Arbell, and J. Fineberg, Phys. Rev. Lett[23] C. K. K. Lun, S. B. Savage, D. J. Jeffrey, and N. Chepurniy, J.
76, 3959(1996. Fluid Mech.140 223 (1983.
[9] O. Lioubashevski, Y. Hamiel, A. Agnon, Z. Reches, and J.[24] J. T. Jenkins and M. W. Richman, Arch. Ration. Mech. Anal.
Fineberg(unpublishegl 87, 355(1985.
[10] K. Kumar and L. S. Tuckerman, J. Fluid MecB79, 49 [25] J. T. Jenkins and M. W. Richman, J. Fluid Med®82 313
(19949. (1988.
[11] K. Kumar, Proc. R. Soc. London, Ser. 452 1113(1996. [26] A. Goldshtein and M. Shapiro, J. Fluid Mec282, 75 (1995.
[12] J. Bechhoefer, V. Ego, S. Manneville, and B. Johnson, J. Fluid27] C. Bizon, M. D. Shattuck, J. B. Swift, and H. L. Swinney,
Mech. 288 325(1995. Phys. Rev. E60, 4340(1999.
[13] L. Tsimring and I. Aronson, Phys. Rev. Left9, 213(1997. [28] J. T. Jenkins and S. B. Savage, J. Fluid Mek30, 187(1983.
[14] D. H. Rothman, Phys. Rev. &7, R1239(1998. [29] C. K. K. Lun and S. B. Savage, Acta MedB3, 15 (1986.
[15] E. Cerda, F. Melo, and S. Rica, Phys. Rev. L&®, 4570 [30] C. K. K. Lun, J. Fluid Mech233, 539(1991).
(1998. [31] T. G. Drake, J. Fluid Mech225, 121 (199)).

[16] E. Clement, L. Vanel, J. Rajchenbach, and J. Duran, Phys[32] W. Losert, D. G. W. Cooper, J. Delour, A. Kudrolli, and J. P.
Rev. E53, 2972(1996. Gollub, Chao99 (3), 682(1999.



7216 C. BIZON, M. D. SHATTUCK, AND J. B. SWIFT PRE 60

[33]J. S. Olafsen and J. S. Urbach, Phys. Rev. L&t. 4369 [38] J. T. Jenkins, Trans. ASME, J. Appl. Mec9, 120(1992.

(1998. [39] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vet-
[34] C. S. Campbell, Annu. Rev. Fluid Mech, 57 (1990. terling, Numerical Recipes in @Cambridge University Press,
[35] E. L. Grossman, T. Zhou, and E. Ben-Naim, Phys. Re®5E Cambridge, 1988

4200(1997). [40] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J.
[36] C. Bizon, Ph.D. thesis, University of Texas at Austin, 1998. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S.
[37] C. Bizon, M. D. Shattuck, J. R. de Bruyn, J. B. Swift, W. D. Ostrouchov, and D. SorensddAPACK Users’ Guidend ed.

McCormick, and H. L. Swinney, J. Stat. Phy, 449 (1998. (Society for Industrial and Applied Mathematics, Philadelphia,
Color pictures of granular convection can be found at http:// PA, 1995.

chaos.ph.utexas.edu/errata/bizon98a.html.



