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Linear stability analysis of a vertically oscillated granular layer

C. Bizon, M. D. Shattuck, and J. B. Swift
Center for Nonlinear Dynamics and Department of Physics, University of Texas, Austin, Texas 78712

~Received 24 May 1999!

We present a linear stability analysis of an oscillating granular layer, treating it as an isothermal incom-
pressible fluid with zero surface tension, which undergoes periodic collisions with and separations from an
oscillating plate. Because the viscosity of the granular layer is unknown, we use the experimental value of the
critical acceleration for the transition from a flat to patterned layer as input for the theory, and use the analysis
to calculate the granular viscosity and the wavelength of the most unstable mode. The wavelength compares
favorably with the experimental pattern wavelength. Further, we find that the wavelengths are controlled by the
viscosity of the granular layer.@S1063-651X~99!11112-7#

PACS number~s!: 45.70.Mg, 45.70.Qj, 47.20.2k, 05.20.Dd
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I. INTRODUCTION

Dissipative systems that undergo instabilities from u
form to patterned states when driven from equilibrium a
ubiquitous @1#. When oscillated vertically, both a layer o
liquid and a layer of macroscopic grains will undergo
instability from a flat upper surface to a pattern of subh
monic standing waves at a critical value of the vertical
celeration @2,3#. In each case, observed patterns inclu
stripes, squares@4,2,5,6#, hexagons@2,5,6#, and localized pat-
terns@7–9#. The instability of the shaken liquid layer, calle
the Faraday instability, can be theoretically attacked thro
a linear stability analysis of the Navier-Stokes equatio
@10,11#, yielding critical accelerations and pattern wav
lengths in excellent agreement with experiment,@10–12#. A
number of models have been proposed for the oscilla
granular layer@13–15#, but their ad hoc nature makes qua
titative comparison to experiment difficult.

The pattern wavelength as a function of frequency
been experimentally measured@4,16,3,17# in the granular
system, as shown in Fig. 1. Only the theory by Eggers
Riecke @18# has been able to produce results that comp
well with experiment, but the equations that they use
phenomenological, and contain a surface diffusion term
has no clear physical analog.

Although some of the phenomenology of Faraday patte
and the patterns in granular media are similar, several
nificant differences make analysis of the granular system
ficult. Collisions between individual grains, unlike the ana
gous collisions between molecules of the liquid, are stron
inelastic and purely repulsive. Surface tension, which a
along with gravity as a restoring force for Faraday waves
absent in granular waves. Because neither surface ten
nor air pressure hold the granular layer to the oscillat
plate, the plate accelerates away from the layer wheneve
plate’s acceleration is downward and larger than the ac
eration due to gravity,g. At a subsequent time, the free
falling layer collides sharply with the plate. Figure 2 displa
a time series of this motion, as seen in molecular dynam
simulations, which agree with experimental results for
types and wavelengths of patterns obtained@19,20#. In con-
trast to this sequence of free flights alternating with viole
collisions, a liquid layer remains in contact with the pla
PRE 601063-651X/99/60~6!/7210~7!/$15.00
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even for accelerations of over 10g @12,21#. For the granular
layer, each plate-layer collision excites random motion of
grains, called granular temperature in analogy to random
lecular motion; inelasticity of granular collisions subs
quently damps this motion. Therefore, unlike the temperat
of the liquid, the granular temperature varies both spatia
and temporally. The liquid layer is incompressible; t
granular layer changes in volume throughout the cycle.
nally, the variations in density and temperature lead to va
tions in the thermal conductivity and viscosity@22–27#, or to
variation in the transport of granular temperature and m
mentum through the medium.

Furthermore, the continuum equations of motion f
granular fluids lack the stature of the analogous Nav
Stokes equations, which describe the motion of molecu
fluids. The granular continuum equations have been deri
from kinetic theory only in the limit of small inelasticity
@28,23,24,29,30#, and have been subjected to very few e
perimental@31–33# or numerical tests@34,35,27#. However,
the striking similarity to Faraday waves suggests that
analysis similar to that for Faraday waves would be fruitf
Further, the fact that secondary instabilities of stripe patte
in the granular layer are the same as those seen in contin
systems@20# and the finding from simulations that the pa
ticle velocity distributions are nearly Gaussian@36# both ar-
gue in favor of a continuum description.

We report on a linear stability analysis of a simplifie
version of the granular continuum equations of motion.
produce a tractable problem, we consider only the most
portant of the differences between oscillated liquids a
granular media. In particular, we shall examine the line
stability of an isothermal, incompressible fluid with zero su
face tension, but which is allowed to leave and recollide w
the oscillating plate. While the variations in granular tem
perature and density are bound to play a role, only
strength and timing of collisions, as incorporated into
model that treats the layer as a single inelastic ball, h
been demonstrated to play a role in the stability of the
layer @2#. Further, the reductions outlined allow us to appr
priate the method that Kumar and Tuckerman@10# and Ku-
mar @11# applied to the Faraday instability. Our analysis fo
lows that of Ref. @11# closely, except that we allow the
acceleration felt by the layer to be a more complicated fu
7210 © 1999 The American Physical Society
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PRE 60 7211LINEAR STABILITY ANALYSIS OF A VERTICALLY . . .
tion of time than the cos(vt) that is appropriate for Farada
waves.

II. DEFINITION OF THE MODEL

With the assumptions that particles are nearly elastic
that single particle distribution functions are nearly Gau
ian, kinetic theory has been used to derive continuum eq
tions of motion for rapidly flowing granular media from th
Boltzmann-Enskog equation for inelastically colliding ha
spheres@28,23,24,30#:

]r8

]t8
1“8•~r8u8!50, ~1!

r8
]u8

]t8
1r8u8•“8u852“8•P81G8~ t8!, ~2!

r8
]T8

]t8
1r8u8•“8T852“8•q82P8:E82g8, ~3!

wherer8 is the mass density,u8 is the continuum velocity,
P8 is the pressure tensor,G8(t8) is a time dependent externa
force,T8 is the~granular! temperature,q8 is the heat flux,g8
is the temperature loss rate due to inelastic collisions,
Ei j8 5 1

2 (] iuj81] jui8). Primed quantities are dimensiona
unprimed quantities will be dimensionless. Constitutive re
tions for P8 and q8 are given by Newton’s stress law an
Fourier’s heat law, with dynamic viscositym8(r8,T8) and
thermal conductivityk8(r8,T8) provided by kinetic theory.
These transport coefficients are functions of the thermo
namic state of the layer, so they will in turn depend upon
forcing parameters; as we shall see, the same layer may
different viscosities at different frequencies. Because
equations are compressible, the pressureP8 is given by an
equation of state.

We simplify these equations by assuming that the gra
lar layer is isothermal and incompressible. The assump
of constant temperature is tantamount to exactly balanc
the production of temperature due to collision with the pl

FIG. 1. Nondimensionalized wavelength versus frequency
experiment@17# above onset~dots! and the prediction of linear sta
bility theory ~line! assuming that the critical acceleration for th
onset of waves is 2.5g. The experimental data are for bronz
spheres with diameter 0.165 mm and layer depths between 3 an
particle diameters.
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with the loss of temperature due to inelastic collisions.
actuality, dissipation lags production, so that a large spike
the temperature occurs at each plate collision@37#. However,
the duration of this large variation is only a fraction of th
oscillation cycle. Similarly, the density varies slowly and t
layer expands in a nearly uniform fashion in its free fligh
followed by a rapid compression when the layer hits t
plate. With these simplifying assumptions, and the supp
tion that the external force acts only in the vertical directio
the equations of motion reduce to

“8•u850, ~4!

r8~] t8u81u8•“8u8!52“8P81m8¹82u82G8~ t8!ẑ.
~5!

We nondimensionalize the equations of motion with t
depth of the layerH, the acceleration due to gravityg, and
the densityr8, so that Eqs.~4! and ~5! become

“•u50, ~6!

] tu1u•“u52“P1n¹2u2G~ t !ẑ. ~7!

The nondimensional viscosity, or inverse Reynolds numb
is given byn5m8/r8AH3g.

We choose a frame of reference in which the layer is
rest. Fixingz50 to the initially flat upper interface of the
fluid, the base state becomes a velocity field of zero. Line
izing around this state yields

“•u50, ~8!

] tu52“P1n¹2u2G~ t !ẑ. ~9!

The functionG(t) here describes the effective gravity felt b
the layer as it rests on the plate, flies from it, and recollid
with it.

Following the fluid case, we will look for instabilities o
the upper surface, which has heightz(x,y,t). In the granular

r

30

FIG. 2. This time series shows the dynamics of a granular la
over one oscillation of the plate, which is shown as a solid bla
bar. Each picture is separated in time by one-fourth of a per
Initially, the layer is carried upward on the moving plate. The pla
then accelerates downward, leaving the layer in free fall. Fina
the layer collides with the plate and begins its upward ride. T
dotted line denotes the equilibrium position of the plate. For t
simulation,G52.0 andf 50.3
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7212 PRE 60C. BIZON, M. D. SHATTUCK, AND J. B. SWIFT
case, we might also allow the bottom surface to go unsta
since it is free for part of each cycle. However, to simpl
matters, we assume that the bottom surface stays fixedz
521. The velocity of the top surface is given by the vertic
velocity component,w, at the top surface, i.e., atz
5z(x,y,t). Taking the curl of the curl of Eq. 9 gives th
equation of motion forw

~] t2n¹2!¹2w50. ~10!

Note that although kinetic theory predictsn(r,T), our sim-
plifying assumptions remover and T from the problem, so
that we can no longer use the kinetic theory prediction
determinen.

III. BOUNDARY CONDITIONS

For liquids, the boundary condition atz521 is no slip,
since the liquid is in contact with a solid plate at all time
but for the granular case, the no-slip boundary condition
not appropriate. The granular layer leaves the plate; w
the bottom surface is free, stress-free boundaries should
ply. Furthermore, the interactions between fluid molecu
and surfaces that produce the no-slip boundary condit
are different from the interactions between grains and
plate. Any surface is rough on the molecular level, while
plate is smooth on the scale of grains. Fluid molecules m
be adsorbed onto the surface, and re-ejected with a velo
that is uncorrelated with their old velocity, but no such th
malization applies to encounters between grains and
plate. In general, granular media can exhibit a slip velocity
walls @38#; we simplify matters by assuming that at the bo
tom surface of the granular layer, stress free boundary c
ditions always apply, so that bothw and]zzw equal zero at
z521.

At the top surface,z(x,y,t), all components of the stres
tensor vanish. The tangential components because they
continuous across the interface, the normal component
cause the surface tension of the granular layer is zero. T
conditions plus incompressibility, and the assumption t
the vertical velocity may be written as

w5w~z,t !ei (kxx1kyy),

wherek is the dimensionless wave number, lead to the s
tem of equations whose stability we shall study:

@] t2n~]zz2k2!#~]zz2k2!w50, ~11!

wuz52150, ~12!

]zzwuz52150, ~13!

~]zzw1k2w!uz5050, ~14!

@~] t2n]zz13nk2!]zw#z505k2zG~ t !, ~15!

] tz5wuz50 . ~16!

Except for the absence of surface tension, the form ofG(t),
and the lower boundary condition@Eq. 13!#, these equations
are exactly those of@11#. Equation ~11! is the evolution
e,
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equation for the vertical velocity, Eqs.~12! and ~13! are the
stress free boundary conditions at the bottom boundary,
~14! is the condition on the tangential stress at the top s
face, and Eq.~15! the condition on the normal stress at th
top surface. Finally, Eq.~16! gives the evolution of the free
surface, required for Eq.~15!.

IV. FLOQUET MODES

Following @10,11#, we use Floquet analysis, i.e., we a
sume thatz can be written as

z5e(s1 iav)t (
n52`

`

zneinvt, ~17!

where s and a are both real, andv is the dimensionless
angular frequency of oscillation. For harmonic responsea
50, while for subharmonic response,a5 1

2 .
Assuming thatw can be similarly expanded, Eq.~16!

gives a relation between thewn andzn , namely that

wnuz505@s1 i ~a1n!v#zn . ~18!

The evolution equation@Eq. ~11!# becomes an equation fo
eachwn ,

~]zz2k2!~]zz2qn
2!wn~z!50, ~19!

qn
25k21@s1 iv~a1n!#/n, ~20!

which has the general solution

wn~z!5Pn cosh~kz!1Qn sinh~kz! ~21!

1Rn cosh~qnz!1Sn sinh~qnz!.
~22!

The boundary conditions onwn at the top surface, Eqs.~14!
and ~18!, give

Pn5n~qn
21k2!zn , ~23!

Rn522nk2zn , ~24!

and the boundary conditions Eqs.~12! and~13! at the bottom
surface give

Qn5R coth~q!, ~25!

Sn5P coth~k!. ~26!

Finally, substitution ofwn into Eq. ~15! yields

n2 coth~qn!k@~k21qn
2!224k3qn#zn5@2G~ t !k2z#n ,

~27!

which will be transformed into an eigenvalue equation.

V. ACCELERATION OF THE LAYER
AND THE INELASTIC BALL MODEL

For Faraday waves,G(t)512G cos(vt) so that the right
hand side of Eq.~27! simply couples moden to modesn
21 andn11; the more complicated dynamics of the gran
lar layer lead to a more complicated version ofG(t), as seen
in Fig. 3. When the layer is in free flight, it feels no effects
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PRE 60 7213LINEAR STABILITY ANALYSIS OF A VERTICALLY . . .
gravity, when on the plate it feels 12G sin(vt), and when it
hits the plate, it feels a strong acceleration. In the lab fra
the velocity of the layer is being rapidly changed from
negative downward velocity to the upward velocity of t
plate.

We let

G~ t !5x~ t,ton ,to f f!@12G sin~vt !#1Gd~ t,ton!, ~28!

whereton andto f f are the times at which the layer makes a
loses contact with the plate,x(t,a,b) is equal to 1 fora,t
,b and 0 otherwise, andGd(t,ton) is a sharply peaked func
tion at ton that describes the acceleration of the layer due
the collision. Specifically, if the relative velocity between t
plate and the layer isvc , we modelGd(t,ton) with

Gd~ t,ton!5
vc

Apt
e2[( t2ton)/t] 2

, ~29!

which integrated over time provides the impulsevc to the
layer. The parametert gives the width of the collisiona
spike, and is chosen to beT/100, whereT is the period of
oscillation. The values ofton , to f f , andvc are not given by
the present theory; to get them we invoke the inelastic
model@2#. According to this model, the layer effectively ac
like a single particle with zero coefficient of restitution.
leaves the plate whenever the acceleration of the plate eq
2g, so thatto f f is defined from

2G sin~vto f f!521. ~30!

From that time, the inelastic particle travels parabolica
until it strikes the plate atton :

z~ to f f!1v~ to f f!~ ton2to f f!2~1/2!~ ton2to f f!
2

5A sin~vton!, ~31!

wherez(to f f) andv(to f f) are the height and velocity of th
inelastic particle as it leaves the plate, andA is the dimen-
sionless amplitude of the plate’s oscillation. Equation~31!
must be solved numerically forton . Finally, the collision
velocity is the relative velocity between the plate and the b
when the two collide:

FIG. 3. Vertical momentum transfer from the bottom plate
particles per 1/1000 of a cycle. The momentum transfer is sc
with the gravitational acceleration and the particle diameters,
while time is scaled with the oscillation periodT. These data are
from a simulation of 6000 particles atG52.1, H/s517
e,

o

ll

als

ll

vc5Av cos~vton!2v~ to f f!~ ton2to f f!. ~32!

While the inelastic ball model oversimplifies the dynam
ics of the layer@3#, bifurcations in the inelastic ball mode
closely correspond to experimentally observed bifurcatio
in the vibrated granular layer@4#. Further, these transition
depend only uponG, not uponv, just as in experiment. This
success justifies the supposition that the sequence of c
sions is the determining factor in the stability of the flat sta

VI. DERIVATION OF THE EIGENVALUE EQUATION

Before expandingG(t), we rewrite it as

G~ t !511Gd,x1GGG, ~33!

where

Gd,x5Gd2x~ t,ton ,to f f!, ~34!

GG52x~ t,ton ,to f f!sin~vt !. ~35!

Now, assume that each of these can be expanded into Fo
modes,

Ga5(
l

Gl
aeiv l t . ~36!

The products on the right hand side of Eq.~27!, then, are

Gaz5(
n

(
m

Gn2m
a zmeivnt. ~37!

Equation~27! becomes

Anmzm5GBnmzm , ~38!

where

Anm5dnm@11~n2/k!coth~qn!$~k21qn
2!224k3qn%#

1Gn2m
d,x , ~39!

Bnm52Gn2m
G . ~40!

To cast Eq.~38! as an eigenvalue problem, we must eith
invert A or B. In Refs. @10,11#, A is inverted, since it is
diagonal in the absence ofGd,x. Our A is more complicated,
so instead we invertB. This inversion is simpler, becauseB
is a Toeplitz matrix, i.e., thej th row of B is just the first row,
shifted byj spaces@39#. Then,

Mnmzm5Gzn , ~41!

whereM5B21A.

VII. SOLUTION METHOD

In the fluid case,M is a function ofs, a, k, n, andv.
To find the criticalG, s is set to 0, corresponding to margin
stability, anda to either 0 or 1/2. For a fixedv, k is varied
and the eigenvalues ofM are found. This results in the mar
ginal stability curve in theG2k plane; the lowest point on
this curve corresponds to the criticalG and k for that fre-
quency. Varyingv leads to the onsetGc(v) and the disper-

d
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7214 PRE 60C. BIZON, M. D. SHATTUCK, AND J. B. SWIFT
sion relationkc(v). Because the indices onM range from
2` to `, the expansion must be truncated, but becaus
the simple form of the acceleration for the fluid case, onl
few modes must be kept to achieve accurate results.

In the granular case, the situation is somewhat l
straightforward.M depends on not onlys, a, k, n, andv,
but also onvc , ton , and to f f , which in turn depend onG.
Furthermore, we don’t know the viscosityn for the granular
layer, which will presumably depend in some way on t
external control parametersG andv.

Rather than takingn as an input, and using it to calcula
Gc and the dispersion relation, we will takeGc as a given,
and use it to calculaten and the dispersion relation. In ex
periments, the initial onset to patterns occurs nearG52.5.
There is slight dependence onv, but we will suppose tha
Gc52.5 for all v.

The criticaln andk will be functions ofv. For a givenv,
we use the inelastic ball model to calculateton , to f f , and
vc , assumingG52.5. From these, the Fourier coefficients
theGa are calculated; thenA andB, assuming a givenn, and
s50 anda51/2, corresponding to marginal stability of su
harmonic waves. The numerical recipe ctoeplz@39# inverts
B, and calculatesM. Then, the eigenvalues ofM are calcu-
lated by the routine zgeev, a routine from the linear alge
packageCLAPACK @40#, which calculates the eigenvalues of
square nonsymmetric complex matrix.

These eigenvalues produce, by varyingk, a marginal sta-
bility curve in theG-k plane; see Fig. 4. The lowest point o
this curve again definesGc . We have already assumed
givenvc , to f f , andton , so thatGc is the acceleration ampli
tude betweento f f andton . The physical condition thatGc be
the sameG that produced the parameters from the inelas
ball model now enters as an extra condition. To satisfy t
condition, we varyn until Gc is within 1% of the assumed
critical G.

As in the fluid case, only a fixed number of modes a
kept, but due to the rapidly varyingGd, we must keep many
more. Results with 30 modes and 50 modes differ by l
that 1%, while results with 50 and 100 modes differ by le
than one part in 104. For all subsequent results, we useN
550.

For Faraday waves at low frequencies, the response o
layer to oscillation may be harmonic, rather than subh
monic @11#. In experiments on granular media, only subh
monic response has been observed. To check for harm

FIG. 4. Marginal stability curves, forv53.0 and 1: n
50.2, L: n50.176. Both calculations include 50 modes. T
solid line is the consistency condition,Gc52.5.
of
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response in our analysis, we performed runs witha
50,1/2, n51.41, andf 50.1, which is the lowest frequenc
we investigate. Even for this low frequency, the critical a
celeration for the onset of harmonic waves is a factor of
higher than that for subharmonic waves, so that only
subharmonic response must be studied for higherf.

VIII. RESULTS AND DISCUSSION

Figure 1 displays the dimensionless wavelengthl
5l8/H as a function of dimensionless frequencyf
5(v/2p) for experiment@17# at fixedG53.0. On the same
plot, the wavelengths of the most unstable model52p/kc
for the model described above are shown. Given the amo
of approximation involved in the model, the agreement
remarkable. At high and low frequencies the model syste
atically underestimates the wavelengths, suggesting tha
functional form is probably incorrect, but note that no fr
parameters were used in fitting the data. The deviation
high frequency is probably not due to particle size effec
since for the deepest experimental layers in Fig. 1, the wa
lengths are still about 60 particle diameters. The model p
dicts the most unstable wave number at onset, but Fig
compares to data above onset, because those are the
available. Because the final state after a hysteretic trans
is finite amplitude, comparison to a wavelength derived fro
linear theory may be misleading. However, experime
show that the wavelength depends only weakly uponG @17#,
which determines the distance above onset.

Because this model is isothermal, the dissipative prop
ties of the granular media, assumed to be crucial in ot
continuum models, enter only indirectly. Rather, the form
tion of waves is opposed by the action of viscosity, as in
liquid case. As seen in Fig. 5, the wavelength in the mo
nearly scales as a viscous length,An/ f . As expected, the
viscosity itself scales with the oscillation frequency; see F
6. At low frequencies,n}1/f ; above f '0.45, the scaling
changes ton}1/f 3. The wavelengths, then, scale as 1/f at
low f, and cross over to 1/f 2 for higher f.

Although indirect, the inelasticity of grains does play
role in the formation of these patterns. Inelasticity betwe
grains causes a layer to condense, even in the absenc
surface tension. Because collisions are inelastic, the laye
a whole is strongly inelastic in its interaction with the plat
approximating a single inelastic ball. Finally, the temperat

FIG. 5. Log-log plot of nondimensionalized wavelengths
n/ f . The solid line has slope 1/2, corresponding to viscous wa
lengths.
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PRE 60 7215LINEAR STABILITY ANALYSIS OF A VERTICALLY . . .
in the layer is controlled through a balance between prod
tion due to plate collision and loss due to inelasticity. T
temperature controls the granular viscosity@24#, which in
turn controls the pattern wavelengths.

The low frequency scaling of the viscosity is consiste
with kinetic theory ideas. The collision velocity scales wi
A f}G/ f . At fixed G, vc}1/f . If we suppose that the averag
temperature scales with the collision velocity squared,
that the viscosity scales withAT, we find thatn}1/f . This
argument relies on assuming that the average density o
layer is fixed asf varies, but this assumption is probab
flawed. As frequency increases, the layer appears more c
pact.

FIG. 6. Nondimensional log-log plot of viscosity vs frequenc
The solid lines are fits to the high and low frequency regions
have slopes23.0 and21.0, respectively.
ev

ett

et

J

lui

ys
c-

t

d

he

m-

The crossover atf 50.45 occurs whenAn/ f '1, or when
the dimensional viscous length,l v8 , is approximately equal to
the depth of the layer. Assuming thatl v8 may depend upon
H, g, and f 8, we find dimensionally that

l v8}Hbg(12b) f 82~b21!, ~42!

where b cannot be determined with dimensional analys
For low frequencies,l v8.H, and the kinetic theory argumen
above impliesb51/2. As the frequency increases, andl v8
becomes smaller thanH, it also becomes independent ofH.
For b50, Eq. ~42! implies thatn} f 23, which is the high
frequency scaling.

From the outset, the model assumed that the gran
layer was incompressible and isothermal, that the bott
surface remains flat, and that stress-free boundary condit
are reasonable. Any or all of these assumptions may be
sponsible for the deviations from experiment. However,
near agreement with experiment suggests that these ef
are indeed of lesser importance, when compared to the
ing and strength of the violent layer-plate collisions.

ACKNOWLEDGMENTS

We thank Harry Swinney for useful discussions and fo
critical reading of this manuscript. C.B. also thanks
Riecke and L. Tuckerman for interesting and useful disc
sions. This work was supported by the Engineering Resea
Program of the Office of Basic Energy Sciences of the D
partment of Energy.

d

us-

d

B.

P.

.,

, J.

al.

,

P.
@1# M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys.65, 851
~1993!.

@2# F. Melo, P. B. Umbanhowar, and H. L. Swinney, Phys. R
Lett. 75, 3838~1995!.

@3# T. H. Metcalf, J. B. Knight, and H. M. Jaeger, Physica A236,
202 ~1997!.

@4# F. Melo, P. Umbanhowar, and H. L. Swinney, Phys. Rev. L
72, 172 ~1994!.

@5# A. Kudrolli and J. P. Gollub, Phys. Rev. D97, 133 ~1996!.
@6# D. Binks and W. van de Water, Phys. Rev. Lett.78, 4043

~1997!.
@7# P. Umbanhowar, F. Melo, and H. L. Swinney, Nature~Lon-

don! 382, 793 ~1996!.
@8# O. Lioubashevski, H. Arbell, and J. Fineberg, Phys. Rev. L

76, 3959~1996!.
@9# O. Lioubashevski, Y. Hamiel, A. Agnon, Z. Reches, and

Fineberg~unpublished!.
@10# K. Kumar and L. S. Tuckerman, J. Fluid Mech.279, 49

~1994!.
@11# K. Kumar, Proc. R. Soc. London, Ser. A452, 1113~1996!.
@12# J. Bechhoefer, V. Ego, S. Manneville, and B. Johnson, J. F

Mech.288, 325 ~1995!.
@13# L. Tsimring and I. Aronson, Phys. Rev. Lett.79, 213 ~1997!.
@14# D. H. Rothman, Phys. Rev. E57, R1239~1998!.
@15# E. Cerda, F. Melo, and S. Rica, Phys. Rev. Lett.79, 4570

~1998!.
@16# E. Clément, L. Vanel, J. Rajchenbach, and J. Duran, Ph

Rev. E53, 2972~1996!.
.

.

t.

.

d

.

@17# P. B. Umbanhowar, Ph.D. thesis, University of Texas at A
tin, 1996.

@18# J. Eggers and H. Riecke, Phys. Rev. E59, 4476~1999!.
@19# C. Bizon, M. D. Shattuck, J. B. Swift, W. D. McCormick, an

H. L. Swinney, Phys. Rev. Lett.80, 57 ~1998!.
@20# J. R. de Bruyn, C. Bizon, M. D. Shattuck, D. Goldman, J.

Swift, and H. L. Swinney, Phys. Rev. Lett.81, 1421~1998!.
@21# C. L. Goodridge, W. T. Shi, H. G. E. Hentschel, and D.

Lathrop, Phys. Rev. E56, 472 ~1997!.
@22# J. T. Jenkins and M. Shahinpoor, inMechanics of Granular

Materials: New Models and Constitutive Relations, edited by
J. T. Jenkins and M. Satake~Elsevier Science Publishers B.V
Amsterdam, 1983!, p. 339.

@23# C. K. K. Lun, S. B. Savage, D. J. Jeffrey, and N. Chepurniy
Fluid Mech.140, 223 ~1983!.

@24# J. T. Jenkins and M. W. Richman, Arch. Ration. Mech. An
87, 355 ~1985!.

@25# J. T. Jenkins and M. W. Richman, J. Fluid Mech.192, 313
~1988!.

@26# A. Goldshtein and M. Shapiro, J. Fluid Mech.282, 75 ~1995!.
@27# C. Bizon, M. D. Shattuck, J. B. Swift, and H. L. Swinney

Phys. Rev. E60, 4340~1999!.
@28# J. T. Jenkins and S. B. Savage, J. Fluid Mech.130, 187~1983!.
@29# C. K. K. Lun and S. B. Savage, Acta Mech.63, 15 ~1986!.
@30# C. K. K. Lun, J. Fluid Mech.233, 539 ~1991!.
@31# T. G. Drake, J. Fluid Mech.225, 121 ~1991!.
@32# W. Losert, D. G. W. Cooper, J. Delour, A. Kudrolli, and J.

Gollub, Chaos9 ~3!, 682 ~1999!.



.
.

p:/

et-
,

J.
S.

ia,

7216 PRE 60C. BIZON, M. D. SHATTUCK, AND J. B. SWIFT
@33# J. S. Olafsen and J. S. Urbach, Phys. Rev. Lett.81, 4369
~1998!.

@34# C. S. Campbell, Annu. Rev. Fluid Mech.2, 57 ~1990!.
@35# E. L. Grossman, T. Zhou, and E. Ben-Naim, Phys. Rev. E55,

4200 ~1997!.
@36# C. Bizon, Ph.D. thesis, University of Texas at Austin, 1998
@37# C. Bizon, M. D. Shattuck, J. R. de Bruyn, J. B. Swift, W. D

McCormick, and H. L. Swinney, J. Stat. Phys.93, 449~1998!.
Color pictures of granular convection can be found at htt
chaos.ph.utexas.edu/errata/bizon98a.html.
/

@38# J. T. Jenkins, Trans. ASME, J. Appl. Mech.59, 120 ~1992!.
@39# W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. V

terling, Numerical Recipes in C~Cambridge University Press
Cambridge, 1988!.

@40# E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra,
Du Croz, A. Greenbaum, S. Hammarling, A. McKenney,
Ostrouchov, and D. Sorensen,LAPACK Users’ Guide2nd ed.
~Society for Industrial and Applied Mathematics, Philadelph
PA, 1995!.


