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In the Supplementary Materials, we provide addi-
tional details concerning two technical points made in
the manuscript. We first describe results from numerical
simulations of packings of three equal-sized frictionless
disks to illustrate the difference between ‘basin volumes’
(i.e. the collection of initial conditions in configuration
space that map to each distinct packing [1]) and the total
volume in configuration space occupied by a given class
of the saddle packings with m missing contacts. We also
include a discussion of how rattler particles affect the
form of the coefficients in the power series expansion of
the partition function in terms of the static friction coef-
ficient.

1. Probability for a specific packing versus the fraction
of mth order saddle packings We focus on a system with
three equal-sized frictionless disks confined within a 1x1
square box with fixed walls. For this system, there is only
one mechanically stable packing with m = 0 up to parti-
cle rotations, inversions, and label exchanges. Since the
system has fixed instead of periodic boundary conditions,
the isostatic number of contactsis N0 = 2N+1 = 7. If we
treat packings that are related by rotations, inversions,
and label exchanges separately, there are 24 microstate
packings with m = 0. Using the successive compression
and energy relaxation packing generation protocol start-
ing at zero packing fraction [2], we measured the prob-
ability for obtaining each of the m = 0 packings with
the constraint that particles 2 and 3 start at positions
(0.2, 0.6) and (0.45, 0.85), respectively, and particle 1 is
initialized at location (z,y) in the box.

The position of each pixel in the box in Fig. 1 repre-
sents the initial position of particle 1 and its color cor-
responds to one of the 11 out of 24 microstates to which
the system evolved using the packing generation proto-
col. (The remaining 13 microstates can not be obtained
using this particular set of initial conditions.) The white
lines indicate the location of particle 1 in its final posi-
tion for each microstate. The area of each colored re-
gion gives the probability of finding that particular mi-
crostate. This area is unrelated to the area in configura-
tion space of each final m = 0 packing, which is a small
circular area whose diameter decreases with increasing
accuracy of identifying the location of the packing. We
see explicitly that the Gibbs equal-probability assump-
tion for particular m = 0 microstates does not hold since
the basin areas of the microstates are not equal.

In Fig. 1, we also identity (by a solid black line) sad-

dle packings with m = 1 that connect each of the 11
final microstate m = 0 packings. One example of an
m = 1 saddle packing (shaded gray) is shown in the bot-
tom right of the box and the position of particle 1 in this
microstate is indicated. In the closely related microstate
m = 0 packing (colored orange), particle 1 is touching
the bottom boundary. In the microstate m = 1 packing,
particle 1 has moved away from the wall. Near the top
right corner of the collection of m = 1 packings, particle
2 touches the bottom wall creating another microstate
m = 0 packing (colored red). This process continues as
the collection of m = 1 packings is traversed in configura-
tion space (as one moves along the black solid line) with
different particles leaving and then touching the fixed
walls. To determine the probability of having a final mi-
crostate packing with m = 0 or 1 missing contacts, the
shaded regions are irrelevant. We know that the sys-
tem must occur in configuration space on the black line,
and we can use the Gibbs’ assumption to determine the
fraction of microstate packings that will occur within a
characteristic distance d of the m = 0 points or m =1
lines. (See Eq. 1 in the main text.)

2. Coefficients in the power series expansion of the
partition function in terms of the static friction coeffi-
cient For N frictionless particles in systems with peri-
odic boundary conditions, m = 0 packings have N, =
N9 = 2(N — N,) — 1 contacts in the force-bearing back-
bone, where N, is the number of rattler particles. m =1
packings possess N0 — 1 contacts and mth order saddle
packings possess N0 — m contacts. As a zeroth order
model, we assume 1) N, is constant for all higher-order
packings that originate from a given m = 0 packing and
2) any one of the N — m contacts can be removed for
each m up to Mmax-

With these assumptions, a,, o Np(N,m) (the number
of branches at saddle order m) can be calculated from the
fact that for every m = 0 packing there are N? ways to
make an m = 1 packing with N? — 1 contacts. For every
m = 1 packing, there are N0 — 1 ways to make an m = 2
packing with N2 — 2 contacts. This pattern repeats un-
til there are not enough contacts to stabilize the packing
even in the limit g — 0o. Thus, with these assumptions,
there are Ny(N,m) = NO(N? —1)... (N2 —m) = che
packings that stem from each m = 0 packing. This form
for a,, captures all of the qualitative features of the prob-
ability P, () to have m missing contacts at static fric-
tion coefficient u. However, it does not match the results



FIG. 1: Illustration of the basin areas for 11 of the microstate
m = 0 packings for a system with three equal-sized frictionless
disks confined within a 1x1 box with the positions of particles
2 and 3 initially set to (0.2,0.6) and (0.45,0.85), respectively.
The color of each pixel at (z,y) within the box indicates the
final microstate m = 0 packing to which the system evolved
when particle 1 is initially placed at location (z,y). The lo-
cations of particle 1 in the final packings are indicated by
the black solid line. Microstate m = 1 packings link suces-
sive m = 0 packings along the blacik solid line. An example
microstate m = 1 packing is highlighted in gray.

from the MD simulations of the Cundall-Strack model
quantitatively. (See Fig. 3 (a) in the main text).

Let us examine in detail the two assumptions in the
zeroth order model. First, the number of rattlers clearly
can change as contacts are removed. For example, in
an m = 0 packing every non-rattler particle has at least
3 contacts (and on average 4 contacts), and so remov-
ing one contact will not create any new rattler particles.
However, when the next contact is removed, particles
that had 3 contacts in the m = 0 packing will become
rattlers along the branch in which we remove 2 contacts
from the same particle. On an m = 2 branch, where a
particle with 3 contacts loses 2 of the contacts, the third
contact is not considered a true contact. In this case, the
number of contactsis N, = N,—3 =2(N—N,)—1-3 =
2(N—N,)—4 and, because there are now N; = N,+1rat-
tler particles, (N9) = 2(N—(N,+1))—1=2(N-N,)-3
and m = (N°' — N, = 1. Therefore, N5 out of the
NO(N? —1)(N? — 2) m = 2 branches for an m = 0 pack-
ing with N3 particles with three contacts will be trans-
formed into m = 1 packings. These transformations of
m = 2 packings into m = 1 packings create more m =1
packings relative to m = 2 packings than given by the

. . N?
zeroth order approximation, a,, = Cp,°.

Packings with m = 3 can also be converted into m = 2
packings by creating rattler particles from the backbone.
However, this trend cannot continue for all m. Whenever
a contact is removed and a rattler particle is created,
none of its contacts can remain part of contact network,
so all contacts are removed. However, removing all of
these contacts may create a new rattler particle, which
in turn will create a new one, and cause the packing
to become unstable. Creating a cascade where rattler
particle are successively created becomes more likely as m
approaches mmpyax. Thus, we expect that for large m, the
increase in the number of branches due to the creation of
rattler particles will no longer dominate. We anticipate

that ¢,,(N) = am/Cf,\{g will increase from m = 0 to a
maximum near Mmayx/2 and then decrease again as m
approaches mmax.

Another geometrical feature that can affect the accu-
racy of the zeroth order model is that mth order packings
can occur for which there is no progenitor m = 0 packing.
These packings are not included in our current theoretical
analyses because they are not created by removing con-
tacts from m = 0 packings. A possible source for these
packings could be that they are created by the inclusion
of a rattler particle in an m = 0 packing. For example,
a rattler particle could be brought into contact with two
particles A and B. This would add 2 contacts and re-
move 1 rattler particle leaving an m = 0 packing that
can only be stabilized by friction. If a contact was then
removed between A and B, an m = 1 packing would
be created with no connection to a frictionless m = 0
packing. As m increases, there are more ways to create
such ‘isolated’ packings. However, as m nears my,,x there
will be fewer ways to create isolated packings since all of
the remaining contacts are needed for the force-bearing
contact network. Thus, we again expect ¢,,(N) to be
largests near mmax/2.

These effects lead to the conclusion that we should
expect that the coefficients of the power series expan-
sion of the partition function relative to the zeroth or-
der approximation, ¢,,(N), will increase from m = 0
to a maximum near Mmax/2 and then decrease as m
approaches mmpmax. In I*O“ig. 2, we plot a least-squares

fit of ¢ (N) = ap /C,I,\f“ to the data from the numer-
ical simulations of the Cundall-Strack model. We find
that the deviation is approximately Gaussian in m with
cm(N) =~ exp(—m(m — Mmax)/Mmax)- This finding is in
agreement with our expectations of the likely deviations
from the zeroth order model. The relative simplicity of
this correction suggests that a more thorough account-
ing of the probability for saddle number transformation
by rattler particles joining and exiting the force-bearing
contact network will be possible, and we are currently
working on these corrections, which will be presented in
a forthcoming manuscript.
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FIG. 2: The coefficients ¢, (N) = am(N)/Cf,\ZS of the power
series expansion of the partition function normalized by the
values from the zeroth order model in terms of static friction
coefficient obtained from least-squares fitting to the contact
number data from the numerical simulations of the Cundall-
Strack model (circles). The form c¢,(N) = exp[—m(m —
Mmax)/Mmax] In Eq. 4 in the main text is indicated by the
solid line.
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