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Crystallization of a Quasi-Two-Dimensional Granular Fluid
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We experimentally investigate the crystallization of a uniformly heated quasi-2D granular fluid as a
function of the filling fraction. Our experimental results for the Lindemann melting criterion, the radial
distribution function, the bond order parameter, and the statistics of topological changes at the particle
level are the same as those found in simulations of equilibrium hard disks. This direct mapping suggests
that the study of equilibrium systems can be effectively applied to study nonequilibrium steady states such
as those found in our driven and dissipative granular system.
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Equilibrium statistical mechanics is generally not appli-
cable to systems far from equilibrium where both energy
input and dissipation mechanisms are present, and identi-
fying relevant tools for understanding these systems poses
a serious challenge to the scientific community [1]. Granu-
lar materials have become a canonical system to explore
such ideas since they are inherently dissipative due to
interparticle frictional contacts and inelastic collisions.
Granular materials also have far reaching practical impor-
tance in a number of industries, but often accumulated ad
hoc knowledge is the only design tool used [2]. The dis-
sipative nature of grains means that any dynamical study
requires energy injection, typically involving vibration or
shear [3]. An important feature of this class of systems is
that the driving and dissipation mechanisms can be made to
balance such that a steady state is achieved. Recent inves-
tigation of such nonequilibrium steady states has shown
that connections with equilibrium statistical mechanics
may provide an useful analogy. For example, a single
particle on a turbulent air flow has been shown to exhibit
equilibriumlike dynamics [4], and the nature of the melting
phase transition in two-dimensional granular system is
consistent with the Kosterlitz-Thouless-Halperin-Nelson-
Young scenario for melting of equilibrium 2D crystals [5].

In our study, we have developed an experimental system
to generate a vibrated quasi-two-dimensional granular
fluid of stainless steel spheres that is uniformly heated
(i.e., energy injection is spatially homogeneous). In
insets (a) and (b) in Fig. 1, we present two such examples
of typical nonequilibrium steady states for filling fractions
¢ = 0.60 and ¢ = 0.76, respectively. The first (¢ = 0.60)
is a disordered dense fluid; there is a high collisional rate
and at long times the particles randomly diffuse across the
cell. The second (¢ = 0.76) is crystallized with each
sphere packed into a hexagonal array locked by its six
neighbors.

In this Letter, we analyze the fluid-to-crystal transition
as a function of the filling fraction. The aim of our study is
twofold. First, we make a quantitative characterization of
the structural changes in the granular layer across this
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transition using a number of classic measures, namely,
the Lindemann criterion for melting, the radial distribution
function, and the bond order parameter. Then we apply the
novel concept of shape factor, recently introduced by
Moucka and Nezbeda [6], to measure in detail the topology
of the Voronoi cells across the crystallization transition. In
parallel, we establish a direct comparison between the
behavior of our experimental system and that of simula-
tions of equilibrium hard disks and test the extent to which
the above quantities can be used to study a nonequilibrium
system such as ours. This comparative part of the study
shows that the structural configurations adopted by our
granular fluid are identical to hard disks in equilibrium.
Our experimental apparatus is adapted from a geome-
try introduced by Olafsen and Urbach [7]. We inject en-
ergy into a collection of stainless steel spheres (diameter
D = 1.191 mm) through sinusoidal vertical vibration with
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FIG. 1 (color online). Lindemann ratio v,, vs filling fraction ¢
for a granular layer vibrated at f = 50 Hz and I' = 4. The dotted
horizontal line is located at y,, = 0.15. Crystallization occurs at
¢, = 0.719. Insets (a) and (b) are representative experimental
frames in the fluid and crystal phases, at ¢ = 0.6 and ¢ = 0.76,
respectively.
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frequency f and dimensionless acceleration I' =
AQ2mf?/g), where A is the amplitude of vibration and g
is the gravitational acceleration. The spheres are confined
in a fixed volume gap set by a horizontal stainless steel
annulus (101.6 mm inner diameter) and sandwiched be-
tween two glass plates. The thickness of this annulus is
1.6D, thus constraining the system to be quasi-2D. The top
glass plate is optically flat, but the bottom plate is rough-
ened by sandblasting generating random structures from 50
to 500 um. Upon vibration, the rough plate homogene-
ously randomizes the trajectories of the particles. We
record the dynamics of the system using high speed pho-
tography at 840 Hz and track the particle trajectories in a
(15 X 15) mm? central region.

The system is horizontal to minimize gravity-induced
effects such as rolling and compaction. We vary the total
number of particles in the fixed volume cell over a wide
range: from a single particle to an hexagonally packed
crystal. We define the filling fraction of the granular layer
as ¢ = N[D/(2R)]?, where N is the total number of
spheres, with diameter D in a cell of radius R =
50.8 mm. We fix the forcing parameters at f = 50 Hz
and I' =4 and systematically vary the filling fraction
from 0.2 < ¢ < 0.8.

To interpret the qualitative change in behavior between
dense fluid and crystalline phases, as ¢ is changed, we first
measure the Lindemann ratio. For a wide range of materi-
als, Lindemann found [8] that a solid melts when the
vibrational amplitude of its atoms reaches a critical mag-
nitude, typically between 10% and 15%, of the interatomic
spacing. The Lindemann ratio in the vicinity of crystalli-

zation is y,, = 1/{(r — (r))?)/L, where r is the positional
vector of the particles and L is the bond length between
(Voronoi) nearest neighbors, corresponding to the average
lattice spacing in the crystal phase. In Fig. 1, y,, is plotted
at high values of ¢. In the range 0.652 < ¢ < 0.719, a
sharp drop in v,, is observed, and, above ¢ > 0.719, the
Lindemann ratio becomes approximately constant at y, ~
0.15. There the system freezes at ¢, = 0.719 in excellent
agreement with the crystallization or solidus point, for
equilibrium hard disk simulations: ¢$™ = 0.716 [9].

The Lindemann criterion is empirical and contains little
information about structural configurations. For this, we
calculate the radial distribution function g(r), which is a
standard way of describing the average structure of par-
ticulate systems [10]. In Fig. 2(a), we plot curves of g(r) for
representative ¢. For low filling fractions (e.g., ¢ = 0.5),
we observe fluidlike behavior, and g(r) is peaked at r/D =
1,2, and 3, as is commonly seen in hard sphere simulations
[10]. At higher ¢ (e.g., ¢ = 0.65), g(r) develops an addi-
tional shoulder below the r/D = 2 peak, which at higher
densities (e.g., ¢ = 0.7 and ¢ = 0.72) evolves into a
distinct peak located at /D = /3, signifying hexagonal
packing. To each g(r) experimental curve in Fig. 2(a), we
have superposed a corresponding (dashed) curve from a
Monte Carlo simulation of equilibrium hard disks recently
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FIG. 2 (color online). (a) Experimental (solid) and numerical
(dashed, extracted from Ref. [6]) curves of the radial distribution
functions for 5 values of ¢. The arrow points in the direction of
decreasing ¢. Inset: Section of g(r) curve for ¢ = 0.6.
(b) Radial distribution function at contact, g(r = D) vs the filling
fraction. The dashed line corresponds to the theoretical
Carnahan-Starling equation [11]. ¢; and ¢, are the liquidus
and solidus points, respectively.

reported by Moucka and Nezbeda [6], for identical values
of ¢. The agreement between the experimental and nu-
merical curves is remarkable, implying that our experi-
mental nonequilibrium granular fluid is adopting structural
configurations identical to those found in systems of an
equilibrium hard disk. The only deviations occur near
r/D =1, as seen in the inset in Fig. 2(a), for ¢ = 0.60.
This discrepancy is due to the out of plane collisions in our
experiments leading to apparent particle overlap in projec-
tion, which would not be possible if the system were
exactly two-dimensional. The amount of overlap is con-
sistent with our layer thickness of 1.6D. This deviation is
seen in the plot of g(r = D) (i.e., at contact) which corre-
sponds to the absolute maximum of g(r) and is shown in
Fig. 2(b). For low filling fractions and up to ¢ ~ 0.57,
g(D) follows the theoretical curve of Carnahan-Starling,
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g (D) =[16 — 7¢]/[16(1 — ¢)?], which is usually as-
sumed in the kinetic theory equation of state for granular
gases [11], but g(D) is systematically lower than g(D) by
~%14. For ¢ > 0.57, the deviations from g©S(D) increase
up to ¢ = 0.652, where there is a discontinuity in the
curve’s slope. For 0.652 < ¢ < 0.719, there is a period
of slower growth of g(D) with ¢. This is consistent with
the scenario of the existence of a fluid phase (¢ < 0.652),
an intermediate or transition phase (0.652 < ¢ < 0.719),
and a crystal phase (¢ > 0.719). We have performed a
parametric study where we varied f and I" and found that
the structure of the granular fluid remained unchanged, as
measured by g(r). This is what one would expect for hard
spheres where temperature is not a relevant parameter.

In addition to the development of correlations in
the particle positions, angular correlations also arise
as ¢ is increased [12]. We measure these using the

(global) bond-orientational order parameter $E*™" =

[1/M 3 1/N; 37 e%], where M is the number of
particles in the observation window, 6;; is the angle be-
tween the particles i and j and an arbitrary but fixed
reference axis, and N, is the number of nearest neighbors
of particle i, found using the Voronoi construction [13]. In
Fig. 3, we plot the dependence of £ °** on ¢. The value of
the bond-orientational order parameter tends to unity in the
crystal phase, but /2™ < 1 for a disordered phase.

As with g(D), three different regions with the same
phase boundaries ¢; = 0.652 (liquidus point) and ¢, =
0.719 (solidus point) can be identified in Fig. 3 based on
the slope of (). The observed behavior is consistent
with the two-step continuous phase transition observed
during equilibrium 2D crystallization [12], where the first
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FIG. 3 (color online). Semilogarithmic plot of the bond-
orientational order parameter i)¢. The first two lines, I and II,
are least squares fits of the form ¢ ~ exp[A¢], and line III is a
linear fit of the form ¢y ~ A¢. The dashed and solid vertical lines
are located at ¢, =0.652 and ¢, = 0.719, respectively.
Inset: Linear version of the plot.

transition transforms the isotropic fluid phase into an hex-
atic phase with long range orientational ordering but no
positional ordering, and the second transforms the hexatic
phase into a crystal with both long range orientational and
positional order.

Moucka and Nezbeda [6] have recently introduced the
concept of shape factor {, which is a sensitive measure to
further quantify structural changes in the fluid-to-crystal
transition in 2D. { is defined at the particle level, by
employing Voronoi tessellation, as ¢; = C?/47S;, where
S; is the surface area and C; the perimeter of the Voronoi
cell of the ith particle. For circles { = 1, and { > 1 for all
other shapes [{ =4/m~ 1273 for squares, ¢ =

ar/5tan(7r/5) ~ 1.156 for regular pentagons, and ¢ =

6/ V372 ~ 1.103 for regular hexagons]. Therefore, { is a
quantifier of the topology of the Voronoi cells associated
with the individual particles.

In Fig. 4(a), we present a surface plot of the distribution
of shape factor P({, @), and vertical cross sections of
P(¢, ¢) for fixed ¢ are presented in Fig. 4(b). We super-
pose numerical (dashed lines) data of Monte Carlo calcu-
lations of equilibrium hard disks [6], for the same values of
¢, and find that our experimental results are in excellent
agreement with the numerical simulations. At low ¢, P({)
exhibits a broad and flat maximum; the particles are ran-
domly distributed and no specific type of cells are formed.
As ¢ is increased, P({) becomes increasingly localized
around the maximum, which progressively moves towards
lower values of {. Eventually, for ¢¢ > 0.65 the distribution
becomes bimodal and a distinct second maximum appears.
In the vicinity of the crystallization point ¢, = 0.719, the
original maximum for high { values disappears while the
low ¢ maximum rises sharply (centered at { = 1.1, the
value for regular hexagons). Figure 4(a) clearly shows the
existence of two distinct classes of shapes.

To quantify these classes, we follow the classification
scheme of the Voronoi cells proposed by Moucka and
Nezbeda. An important point to note is that the location
of the minimum of P({), where it exists, is only marginally
dependent on ¢, and we set i, = 1.159. Class A consists
of particles with ¢ < {;,. Class B particles have ¢, <
{ < {,, and class C have > {,, where {, = 1.25. The
upper bound ¢, is set such that, at the filling fraction for
which both maxima of P(/) have equal heights (¢ =
0.65), the number of particles in classes A and B are the
same. We plot the boundaries of cell classes on the surface
plot of P({, ¢) in Fig. 4(a).

In Fig. 4(c), we present the ¢ dependence of the fraction
of particles belonging to each of the classes A, B, and C.
The nature of the previously mentioned special filling
fraction values of ¢; and ¢, which separate the disordered
liquid, the intermediate or transition phase, and the crystal
phases, becomes clear under this classification. ¢; =
0.652 is the point at which class A and class B occur in
the same proportions (the fraction of class C is negligible at
this point). ¢, = 0.719 is the point for which the fraction
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FIG. 4 (color online).
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(a) Surface plot for the probability distribution functions of shape factor P(¢, ¢). The value of P({, ¢) is given

by the adjacent color bar. The two horizontal dashed lines located at = 1.159 and { = 1.25 are the boundaries of classes A, B, and C
of the Voronoi cells, as defined in the text. (b) Experimental (solid line) and numerical (dashed line, extracted from Ref. [6]) vertical
cross sections of the P(¢, ¢) distribution along 5 values of ¢. The arrow points in the direction of decreasing ¢. (c) Fraction of
particles in the A, B, and C classes, as defined in the text, as a function of the filling fraction.

of class B has drastically dropped (but is not strictly zero);
the granular layer consists almost entirely of particle whose
Voronoi cells are regular hexagons and crystallization oc-
curs. This small but finite value of class B accounts for the
existence of dislocations or disclinations, the amount of
which decreases with increasing ¢, as studied in detail by
Olafsen and Urbach [5]. It remains to be shown whether the
intermediate phase between ¢; and ¢, is simply a coex-
istence region as suggested by the leverlike dependence of
the fractions of classes A and B, or, instead, it is an hexatic
phase with algebraically decaying orientational order [5].
One would need to perform the experiments with a con-
siderably larger imaging window to have sufficient spacial
extension to properly test such scalings.

In conclusion, we have reported detailed experimental
measures of structural changes during the crystallization
transition in a homogeneously heated granular fluid. Our
results are in excellent quantitative agreement with
Monte Carlo simulations for the crystallization of equilib-
rium hard disks. It is surprising that the particles in our
granular layer adopt equilibriumlike structural configura-
tions even though the system is both driven and dissipative,
i.e., far from equilibrium. We believe that the principal
ingredients that allow us to establish such a direct analogy
are the homogeneity and uniformity of the energy injection
along with the importance of geometrical effects. The
equilibrium structural configurations for hard disks are
usually determined by an entropy maximization argument
[14]. Whether we are able to explain the observed phase
transitions in our system with entropiclike arguments simi-
lar to those used in hard sphere systems is an important
question which arises from our study and needs further
investigation.
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