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The glass-forming ability (GFA) of alloys, colloidal dispersions, and other particulate materials, as measured
by the critical cooling rate Rc, can span more than ten orders of magnitude. Even after numerous previous
studies, the physical features that control the GFA are still not well understood. For example, it is well known
that mixtures are better glass formers than monodisperse systems and that particle size and cohesive energy
differences among constituents improve the GFA, but it is not currently known how particle size differences
couple to cohesive energy differences to determine the GFA. We perform molecular dynamics simulations to
determine the GFA of equimolar, binary Lennard-Jones (LJ) mixtures versus the normalized cohesive energy
difference ε_ and mixing energy ε̄AB between particles A and B. We find several important results. First, the
log10 Rc contours in the ε̄AB-ε_ plane are ellipsoidal for all diameter ratios, and thus Rc is determined by the
Mahalanobis distance dM from a given point in the ε̄AB-ε_ plane to the center of the ellipsoidal contours. Second,
LJ systems for which the larger particles have larger cohesive energy are generally better glass formers than
those for which the larger particles have smaller cohesive energy. Third, dM (ε_, ε̄AB ) is determined by the relative
Voronoi volume difference between particles and local chemical order SAB, which gives the average fraction of
nearest-neighbor B particles surrounding an A particle and vice versa. In particular, the shifted Mahalanobis
distance dM − d0

M versus the shifted chemical order SAB − S0
AB collapses onto a hyperbolic master curve for all

diameter ratios. These results identify design guidelines for improving the GFA of binary mixtures containing
particles with different sizes, cohesive, and mixing energies.
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I. INTRODUCTION

Nearly all materials can form amorphous solids, how-
ever, it is much more difficult for some materials to resist
crystallization than others. Poor glass formers, such as pure
metals, must be cooled extremely rapidly (i.e., � 1014 K/s)
to form amorphous structures [1]. In contrast, good glass
formers, such as multicomponent alloys, can form amorphous
structures with cooling rates that are 12 orders of magnitude
slower [2–5]. Similarly, monodisperse colloidal dispersions
can crystallize in minutes, while specifically designed poly-
disperse colloidal systems do not crystallize over week or year
timescales [6,7]. An important, open problem is determining
the atomic- or particle-scale properties that control the glass-
forming ability (GFA) of these materials.

Bulk metallic glasses have shown promise as structural
materials and other applications since they possess large frac-
ture toughness, high strength at elevated temperatures, and
the ability to be processed like plastics [8–11]. However, a
significant limitation to the widespread use of metallic glasses
is that it is difficult to fabricate them as bulk samples [2,12].
Numerous metallic glasses can only be formed as thin films
and ribbons [13–15]. Furthermore, bulk metallic glasses often
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contain precious metals and are expensive to produce [16].
Thus, an important technological goal is to develop new alloys
made from abundant elements that can form bulk metallic
glasses.

Numerous recent studies have shown that colloidal crystals
can possess interesting optical applications such as photonic
band gaps and waveguides [17–19]. Also, both disordered and
ordered self-assembled colloidal structures give rise to vibrant
structural coloration in many biological systems [19], such as
insects and birds. Thus, understanding the physical parameters
that control crystallization versus glass formation will aid in
the development of colloidal assemblies with targeted struc-
tural and optical properties.

A common technique for studying glass formation is to
begin in the liquid state and cool the liquid phase at different
rates to determine its susceptibility to crystallization [20].
A first approach for modeling the liquid states of colloids,
alloys, and other glass-forming materials is to describe them
as “simple liquids.” A simple liquid is a collection of N spher-
ical atoms or particles that interact via classical, pairwise or
multibody potentials. Typical pairwise interatomic potentials
for simple liquids, such as the Lennard-Jones (LJ) and Morse
potentials, include parameters for the diameter of the particles
σ and the depth ε of the attractive interactions between par-
ticles. Note that the properties of transition metals have been
described previously using Lennard-Jones interactions [21].

2475-9953/2022/6(7)/075601(12) 075601-1 ©2022 American Physical Society

https://orcid.org/0000-0001-9872-7854
https://orcid.org/0000-0002-9901-4642
https://orcid.org/0000-0001-8473-2505
https://orcid.org/0000-0002-8272-5640
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevMaterials.6.075601&domain=pdf&date_stamp=2022-07-05
https://doi.org/10.1103/PhysRevMaterials.6.075601


HU, JIN, SCHROERS, SHATTUCK, AND O’HERN PHYSICAL REVIEW MATERIALS 6, 075601 (2022)

In general, it is well known that mixtures of different types of
particles are better glass formers than monodisperse systems
[4,14]. For example, binary systems are typically better glass
formers than systems with a single particle type, ternary sys-
tems are typically better glass formers than binary systems,
and so on. For binary LJ systems with the same number of
small and large particles, particles with size ratios of 0.7–0.8
form amorphous structures without demixing over a wide
range of cooling rates [22,23]. For nonequimolar, multicom-
ponent LJ systems, studies suggest that the number fraction
of the different-sized particles should be determined such that
the total particle volume of each species is the same to ensure
amorphous structures that do not demix and crystallize during
cooling [22,23].

In general, differences in particle-scale properties improve
the glass-forming ability of mixtures [21,24]. In previous
studies of LJ systems composed of the same-sized particles,
we identified two dimensionless energetic parameters, the nor-
malized cohesive energy difference ε_ = (εBB − εAA)/(εBB +
εAA) and mixing energy ε̄AB = 2εAB/(εBB + εAA) that con-
trol the glass-forming ability [24]. However, little is known
about the glass-forming ability of mixtures with different
particle sizes and different attractive interactions. For exam-
ple, suppose we have a binary mixture of A and B particles
with diameters σAA and σBB, cohesive energies εAA and εBB,
mixing energy εAB, and number fraction of B particles fB.
What combination of these parameters gives rise to the best
glass-forming ability? Specifically, is the system with a larger
diameter σAA > σBB and larger cohesive energy εAA > εBB

a better glass former than the system with σAA > σBB and
smaller cohesive energy εAA < εBB? Also, can we improve the
glass-forming ability by tuning εAB?

To address these questions we carry out extensive molec-
ular dynamics simulations to determine the critical cooling
rate Rc (minimum rate above which crystallization does not
occur) of binary LJ mixtures over a wide range of ε_ and ε̄AB.
We focus on equimolar mixtures with fB = 0.5 and several
particle size ratios. We find four key results. First, the critical
cooling rate contours in the ε_ and ε̄AB plane are approxi-
mately ellipsoidal for all diameter ratios studied, and thus Rc

can be determined by the Mahalanobis distance dM from a
given point in the ε̄AB-ε_ parameter space to the center of the
ellipsoidal contours. Second, LJ systems for which the larger
particles have larger cohesive energy (i.e., εBB/εAA < 1 and
σBB/σAA < 1) are generally better glass formers than those for
which the larger particles have smaller cohesive energy (i.e.,
εBB/εAA < 1 and σBB/σAA > 1). We show that LJ systems
for which the larger particles have larger cohesive energy
possess inherent structures with lower potential energy and
higher energy barriers compared to those for the opposite
case. Third, the Mahalanobis distance dM , and thus the glass-
forming ability, for a given point in the ε_ and ε̄AB plane is
determined by the relative Voronoi volume difference between
the A and B particles and the local chemical order SAB [25,26],
which gives the average fraction of nearest-neighbor B parti-
cles surrounding an A particle and vice versa. In particular,
the shifted Mahalanobis distance dM − d0

M versus the shifted
chemical order SAB − S0

AB collapses onto a hyperbolic master
curve for all diameter ratios studied. Fourth, we show that
the best LJ glass formers display bond-shortening behavior,

where the separation between weakly interacting particles is
smaller than the value given by the minimum in the pair poten-
tial. These results identify several important design guidelines
for improving the glass-forming ability of binary mixtures
containing particles with different sizes, cohesive, and mixing
energies.

The reminder of the article is organized into three sec-
tions. In Sec. II we describe the computational methods
including the interaction potential, molecular dynamics sim-
ulations, structural characterization, and measurements of the
critical cooling rate, local chemical order, and Voronoi vol-
umes. In Sec. III we describe the main results of the work
and discuss their importance and implications. In Sec. IV
we provide several promising future research directions, in-
cluding computational studies of the glass-forming ability of
binary mixtures over a range of compositions fB and gen-
eralizations of the work to ternary and quaternary systems.
The article includes two Appendixes. In Appendix A we
describe differences in the potential energy of the inherent
structures and glass-forming ability of binary LJ systems with
σBB/σAA < 1 and εBB/εAA < 1 versus those with σBB/σAA > 1
and εBB/εAA < 1. In Appendix B we calculate the local icosa-
hedral order of rapidly cooled binary LJ glasses as a function
of εAB and ε_.

II. METHODS

In this section we describe the computational methods that
we employ to investigate the glass-forming ability of binary
LJ mixtures, including the molecular dynamics simulations
and the cooling protocol, characterization of local structure,
measurement of the critical cooling rate, and analyses of local
chemical order.

A. Molecular dynamics simulations

We focus on binary systems composed of equal number
fractions of A and B particles ( fA = fB = 0.5) with equal
mass m. We assume that the particles interact through the
pairwise Lennard-Jones potential:

Vαβ (ri j ) = 4εαβ

[(
σαβ

ri j

)12

−
(

σαβ

ri j

)6]
, (1)

where α, β indicate which of the particles (A or B) are in-
teracting and ri j is the separation between particles i and j.
We consider systems confined to cubic boxes with periodic
boundary conditions in the x, y, and z directions and N =
2000 is the total number of particles. (In previous studies of
the glass-forming ability of binary Lennard-Jones systems, we
showed that the finite-size effects for the critical cooling rate
for N > 103 are weak [24].) We consider an additive mixing
model for the particle diameters σAB = (σAA + σBB)/2, but we
vary εAB independently relative to εBB and εAA. We choose
length and energy units such that σAA = σ and εAA = ε >

εBB [24]. We consider systems with σBB/σAA = 1.05, 0.99,
0.97, and 0.95, which allows us to crystallize the systems
over a wide range of the energetic parameter space. The
Lennard-Jones potential is truncated and shifted at 2.5σαβ .
The Lennard-Jones pair potential Vαβ (ri j ) for diameter ratio
σBB/σAA = 0.95 and two sets of energetic parameters is shown
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FIG. 1. The binary Lennard-Jones pair potential Vαβ (ri j )/εAA for
diameter ratio σBB/σAA = 0.95 and two sets of energetic parame-
ters: εBB/εAA = εAB/εAA = 1.0 (solid lines) and εBB/εAA = 0.25 and
εAB/εAA = 1.0 (dashed lines). The VAA, VAB, and VBB pair potentials
are represented by blue, orange, and green lines, respectively. VAA

and VAB are the same for both sets of energetic parameters.

in Fig. 1. The pressure, temperature, and timescales are re-
ported in units of ε/σ 3, ε/kb, and

√
mσ 2/ε, where kb is the

Boltzmann constant.
To investigate the glass-forming ability of binary Lennard-

Jones systems, we first equilibrate them at a high temperature
T = 5.0 above the glass transition temperature Tg and then
quench them to low temperature T = 0.1 below Tg over a
range of linear cooling rates R. The simulations are carried out
in the isothermal-isobaric (NPT) ensemble using the Nosé-
Hoover thermostat and barostat with a pressure p = 10, which
enables the system to avoid cavitation over the full range of
parameters. The equations of motion are integrated using a
modified velocity-verlet algorithm with time step �t = 2 ×
10−3 and the time constants for the thermostat and barostat
are set to 102�t and 103�t , respectively.

B. Characterization of local structure

To determine the critical cooling rate Rc, we analyze the
local structural order of the low temperature solids by quanti-
fying the bond orientational order for each particle [7,27]. The
nearest neighbors of each particle are obtained by performing
Voronoi tessellation [28]. We calculate the bond orientational
order parameter q6m(i) for each particle i:

q6m(i) =
Ni∑

j=1

Aj

Ai
tot

Y6m[θ (ri j ), φ(ri j )], (2)

where Ni is the number of nearest Voronoi neighbors of par-
ticle i, Y6m[θ (ri j, φ(ri j )] is the spherical harmonic function of
degree 6 and order m, and θ and φ are the polar and azimuthal
angles. The contribution from the spherical harmonics of each
neighbor j of particle i is weighted by the fraction Aj/Ai

tot of
the area of the Voronoi face separating the two particles to

FIG. 2. The fraction of crystalline particles fxtal in the low-
temperature solid plotted as a function of cooling rate R for
Lennard-Jones binary mixtures with diameter ratio σBB/σAA = 0.95.
The data were averaged over 30 independent trials cooling from
T = 5 above the glass transition temperature Tg to T = 0.1 below
Tg. The dashed lines are best fits to Eq. (4), which allows us to deter-
mine the critical cooling rate Rc at which fxtal = 0.5. We show data
for three sets of parameters: εAB = 1.23 and ε_ = −0.538 (circles);
εAB = 1.33 and ε_ = −0.333 (squares), and εAB = 1.0 and ε_ = 0
(triangles).

the total area of all faces Ai
tot of the polyhedron surrounding

particle i. We determine the number of crystal-like atoms by
calculating the correlations in the bond orientational order
parameter:

s6(i, j) =
∑6

m=−6 q6m(i)q∗
6m( j)√∑6

m=−6 |q6m(i)|2 ∑6
m=−6 |q6m( j)|2

, (3)

where q∗
6m( j) is the complex conjugate of q6m( j). If s6(i, j) >

0.7, we treat the bond as crystal-like [29]. If the total number
of crystal-like bonds for a given particle is larger than 10,
the particle is considered to be in a crystalline environment.
The sensitivity of the thresholds for s6(i, j) and the number
of crystal-like bonds have been studied previously [29,30]. A
benefit of using s6(i, j) is that it does not require specifying
the local symmetry of each crystalline phase to determine
the crystalline particles [21]. For each set of size ratios and
energetic parameters, we calculate the fraction of crystalline
particles fxtal as a function of the cooling rate R.

C. Measurement of the critical cooling rate

In general, fxtal versus the logarithm of the cooling rate
log10 R is a sigmoidal function, where fxtal ≈ 1 as R → 0 and
fxtal ≈ 0 as R → ∞. To measure the critical cooling rate Rc at
which fxtal = 0.5, we assume that

fxtal = 1
2

{
1 − tanh

[
log10(R/Rc)1/κ

]}
, (4)
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FIG. 3. Contour plots of the critical cooling rate Rc as a function of the normalized cohesive energy difference ε_ and mixing energy εAB

for several diameter ratios: (a) σBB/σAA = 0.99, (b) 0.97, (c) 0.95, and (d) 1.05. The black squares indicate the values of ε_ and εAB that were
sampled using the MD simulations and these systems can be crystallized using the cooling rates we considered. Rc decreases by more than five
orders of magnitude as the color changes from blue to red. The parameter space enclosed by the solid magenta line in (a) indicates the region
where binary alloys occur. The light gray solid lines indicate several constant-log10 Rc contours. The solid black line marks the lowest cooling
rate that we studied. The black dashed lines are best fits of Eq. (5) to a few selected log10 Rc contour lines (bold gray lines). The light cyan
squares indicate values of ε_ and εAB that were sampled, but we were not able to crystallize these systems.

where 0 < κ < 1 is the stretching exponent [21,24]. We show
examples of fxtal versus R for three sets of diameter ratios and
energy parameters in Fig. 2. Rc varies by more than a factor of
100 over this range of parameters.

D. Analysis of chemical order

It is well known that the local composition of dense liq-
uids and glasses can deviate strongly from the nominal, or
globally averaged, composition (i.e., fA = fB = 0.5 in the
current study). Deviations from the nominal composition are
frequently termed local “chemical order” [25]. To quantify
local chemical order, we measure the average fraction of par-
ticles Sαβ of type β that are Voronoi neighbors of particles of
type α. To make this quantity symmetric, we define SAB =
(SAB + SBA)/2. Note that Sαβ is coupled to local packing,
since the number of A-type nearest neighbors surrounding a
B particle and vice versa are affected by the diameter ratio
and local density, as well as the energetic parameters.

III. RESULTS

In this section we describe the results from the molecular
dynamics simulations of thermally quenched Lennard-Jones
binary mixtures as a function of the diameter ratio and en-
ergetic parameters. As discussed in Sec. II C, we calculate
the fraction of crystalline atoms fxtal versus the cooling rate
R, and thus we can determine the critical cooling rate Rc,
for each diameter ratio and combination of the energetic
parameters εBB/εAA and εAB/εAA. In previous work [24] we
showed that plotting Rc versus the normalized interaction en-
ergy ε̄AB = 2εAB/(εBB + εAA) and cohesive energy difference
ε_ = (εBB − εAA)/(εBB + εAA) can provide improved collapse
of the data. We show contours of log10 Rc versus ε̄AB and ε_ for
four different diameter ratios in Fig. 3. Note that we sample a
much larger energetic parameter space than that occupied by
binary alloys (region bounded by the magenta solid line) in
Fig. 3(a).

Figure 3 illustrates several key points. First, Rc decreases
with decreasing ε_ (i.e., as ε_ becomes more negative) and
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TABLE I. The position of the ellipse center (ε̄0
AB, ε0

_ ), major and
minor axes a and b, as well as the reference cooling rate log10 R0

from best fits of Eq. (5) to the ellipsoidal contours in Fig. 3 for all
diameter ratios σBB/σAA.

σBB/σAA (ε̄0
AB, ε0

_ ) a b log10 R0

1.05 (−0.538, −0.243) 3.182 0.501 −1.962
0.99 (−1.065, 0.046) 3.701 0.544 −1.724
0.97 (−7.328, 0.103) 6.405 0.501 −0.434
0.95 (−30.598, 0.218) 13.696 0.496 2.912

increasing ε̄AB. Second, the glass-forming ability dramati-
cally improves with decreasing diameter ratio. We find that
the blue region with large values of Rc for the system
with σBB/σAA = 0.99 [Fig. 3(a)] takes up a much larger re-
gion of the ε̄AB-ε_ parameter space than that for the system
with σBB/σAA = 0.95 [Fig. 3(c)]. Third, there is a significant
difference in the log10 Rc contours between the two simi-
lar systems: σBB/σAA = 0.95 and εBB < εAA [Fig. 3(c)] and
σBB/σAA = 1.05 and εBB < εAA [Fig. 3(d)]. In the former case,
the larger particle possesses the larger cohesive energy and
in the latter case, the smaller particle possesses the larger
cohesive energy. In general, for each point in the ε̄AB-ε_ pa-
rameter space, the glass-forming ability is improved if the
larger particle possesses the larger cohesive energy. (In Ap-
pendix A we show that these better glass-forming systems
possess deeper energy minima and larger energy barriers.)
This finding is consistent with four out of six binary bulk
metallic glasses, such as Cu-Zr and Ni-Nb, and 31 out of
47 ribbon-forming metallic glasses [14]. Choosing elements
such that the larger atom possesses larger cohesive energy is
a novel design principle for the development of bulk metallic
glasses.

Another feature of the log10 Rc contours in Fig. 3 is that
they have approximate ellipsoidal shapes in the ε̄AB-ε_ param-
eter space with the major axis oriented in the ε̄AB direction.
Therefore, we used the following ellipsoidal form to describe
all of the data in Fig. 3:

log10

(Rc

R0

)
= −

[(
ε̄AB − ε̄0

AB

)2

a2
+

(
ε_ − ε0

_

)2

b2

]

= −d2
M (ε̄AB, ε_), (5)

where R0 is a reference cooling rate, (ε̄0
AB, ε0

_ ) gives the ellipse
center, and a and b are the major and minor axes of the
ellipse, respectively. dM is the Mahalanobis distance, which
gives the separation between a point in the ε̄AB-ε_ plane to
the center of the ellipse. Several examples of the ellipsoidal
fits are shown as the dashed lines in Fig. 3. The parameters
of the ellipsoidal contours are provided in Table I. We find
that the lengths of the minor axes remain nearly constant
as we tune the diameter ratio, whereas the length of the
major axis increases by a factor of ∼4 as we decrease the
diameter ratio. In addition, the center of the ellipse shifts to
large negative values of ε̄AB with decreasing diameter ratio,
which contributes to the strong increase in the glass-forming
ability.

FIG. 4. The critical cooling rate Rc obtained from the molecular
dynamics simulations (normalized by R0) plotted versus the square of
the Mahalanobis distance d2

M , where dM is the separation between a
given point in the ε̄AB-ε_ plane to the ellipse center for each diameter
ratio. The dashed line gives log10 Rc/R0 = −d2

M .

We note that the measured GFA contours in Figs. 3(a)–
3(c) deviate from the elliptical fits in the parameter region
of highly negative ε_ (such that εAA � εBB) and small ε̄AB.
In this parameter regime, the interactions between pairs of
A atoms are much stronger than those between pairs of B
atoms and between pairs of A and B atoms, which gives
rise to demixing of A and B atoms. When systems demix,
the local distribution of neighboring atoms does not match
that expected from the global composition, fA = fB = 0.5. In
Figs. 3(a)–3(c) demixing in the parameter regime ε_ < −0.6
and 0 < ε̄AB < 1 promotes crystallization, and thus the criti-
cal cooling rate is elevated in this regime. We described the
influence of demixing on the GFA in binary Lennard-Jones
mixtures in our previous work [24]. We find that the GFA in
the ε_ and ε̄AB plane is determined mainly by the elliptical con-
tours, coupled with the narrow rectangular demixing region of
poor GFA at highly negative ε_ and small ε̄AB.

The quality of the fits of the log10 Rc contours to Eq. (5)
is assessed in Fig. 4, where we plot log10(Rc/R0) versus the
square of the Mahalanobis distance d2

M . We show that as the
diameter ratio decreases, dM increases and Rc/R0 decreases.
The R-squared value for the fit of the data in Fig. 4 to Eq. (5)
is ∼0.99, and thus the ellipsoidal approximation in Eq. (5) is
a high-quality description of the log10 Rc contours. Thus, the
glass-forming ability of binary Lennard-Jones systems can be
characterized by dM (ε̄AB, ε_) and a diameter ratio-dependent
offset R0.

To understand the particle-scale features that determine
dM (and the glass-forming ability, Rc/R0) for each binary
Lennard-Jones system, we characterize the structural proper-
ties of glassy solids obtained after rapid cooling (i.e., using
a cooling rate R = 10−2, which is much larger than Rc for
all of the systems studied). In previous work on monoatomic
Lennard-Jones systems [24], we found that the chemical
order obtained from rapidly cooled systems at each point
in the ε̄AB-ε_ plane can provide significant insight into the
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FIG. 5. The Mahalanobis distance dM plotted versus the local chemical order SAB for rapidly cooled (R = 10−2) binary Lennard-Jones
systems with diameter ratios (a) σBB/σAA = 0.99, (b) 0.97, (c) 0.95, and (d) 1.05. The symbols in each panel indicate systems at different
values of ε_. The red solid lines, blue dashed lines, and green dotted lines in each panel indicate samples at fixed ε̄AB ≈ 1.2, 1.6, and 2.0,
respectively.

glass-forming ability. In particular, we showed that deviations
in the local composition from the nominal value are corre-
lated with enhanced glass-forming ability. In the current work
we will correlate both the chemical order SAB and relative
Voronoi volume difference between the two particle types of
the rapidly cooled glassy solids with the glass-forming ability
at each point in the ε̄AB-ε_ plane.

In Fig. 5 we show dM versus the local chemical order
SAB for the LJ systems with diameter ratios σBB/σAA = 0.99,
0.97, and 0.95, where the larger particles have larger cohesive
energies, and for σBB/σAA = 1.05, where the larger particles
have smaller cohesive energies. We organize the data into
groups at fixed values of ε_ and varying ε̄AB. For each sys-
tem, as ε̄AB increases, SAB and dM increase. Thus, increases
in the mixing energy ε̄AB give rise to deviations in the lo-
cal composition from the nominal value, which enhance the
glass-forming ability. In each case, as SAB increases above
0.5, there is a rapid increase in dM . Figure 5 also shows that
there is an SAB-independent offset to dM that increases as
ε_ becomes more negative. This feature is illustrated by the
nearly vertical dashed lines in Fig. 5 that connect dM values
at constant ε̄AB. As shown in Fig. 3, when ε_ < 0 and has

a large magnitude and ε̄AB � 1, the critical cooling rate Rc

decreases below the slowest cooling rates that we considered
in the current simulations. For ε̄AB ≈ 1.2, we can measure Rc

and the corresponding Mahalanobis distance dM for all values
of ε_. However, when ε̄AB ≈ 1.6 and 2.0, as ε_ decreases, Rc

decreases below the values that can be measured in the current
simulations, which prevents us from accurately determining
dM . Thus, as ε̄AB increases, the minimum value of ε_ for which
we can determine dM increases, causing the reduced number
of points for the blue dashed lines and green dotted lines in
Fig. 5. [Note that the correlation between the vertical shift in
dM (SAB) and ε_ breaks down for regions of the ε̄AB-ε_ plane
with poor glass-forming ability for σBB/σAA = 1.05.]

We have shown that changes in dM (and hence changes in
the glass-forming ability) caused by changes in ε̄AB at fixed
ε_ couple strongly to the local chemical order. What is the
particle-scale origin of the variations in dM caused by changes
in ε_ (at fixed ε̄AB)? In Fig. 6 we show that the relative Voronoi
volume difference 〈�V/VA〉 = 〈(VA − VB)/VA〉 (for systems
where the larger particles have larger cohesive energy)
increases as the cohesive energy difference ε_ becomes more
negative. Decreasing the cohesive energy between the smaller
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FIG. 6. The relative difference between the average Voronoi vol-
umes of particle types A and B, 〈�V/VA〉 = 〈(VA − VB )/VA〉 plotted
versus ε_ for all four diameter ratios. Each data point is obtained by
averaging 〈�V/VA〉 over all values of ε̄AB at fixed ε̄_. The error bars
represent the standard deviation at each value of ε_.

B particles in the Lennard-Jones potential allows the average
spacing between B particles to decrease below 21/6σBB. (See
Fig. 1.) Thus, the smaller B particles occupy even less volume
(relative to the larger A particles) as the cohesive energy of the
less-cohesive B particles becomes smaller. For systems where
the larger particles have larger cohesive energy, 〈�V 〉 > 0
for all values of ε_ < 0. The variation of 〈�V/VA〉 versus ε_

is similar for LJ systems with different diameter ratios and
σBB/σAA < 1; they simply differ by the size of the vertical shift
in 〈�V/VA〉.

For the binary Lennard-Jones system where the larger B
particles have smaller cohesive energy σBB/σAA = 1.05, we
use the same definition for the relative Voronoi volume dif-
ference 〈�V/VA〉. In Fig. 6 we show that for this system

FIG. 7. Collapse of the data in Fig. 5 obtained by plotting
dM − d0

M versus SAB − S0
AB for all four diameter ratios. The black

solid line is the best fit of the data to the generalized hyperbolic
form in Eq. (6) with R-squared ≈0.97. The parameters of the best-
fit generalized hyperbola are θ = −130.6◦, A = 0.382, B = 0.390,
Sc

AB − S0
AB = 0.592, and dc

M − d0
M = 0.442.

〈�V/VA〉 < 0 since the B particles are larger than the A
particles. As ε_ becomes more negative, 〈�V/VA〉 increases,
approaching zero, since the larger B particles decrease their
spacing due their decreased cohesive energy. (See Fig. 1.)
Thus, in all cases, decreases in ε_ cause increases in 〈�V/VA〉
and dM , which increases the glass-forming ability.

As shown in Fig. 5, for all diameter ratios and values of
ε_, the dM versus SAB curves possess hyperbolic shapes. We
find that by shifting the curves in SAB and dM by S0

AB and
d0

M , respectively (see Table II), they can be collapsed onto
a single master curve. In general, the shift in SAB is small,
|S0

AB| ∼ 0, and S0
AB < 0. In contrast, d0

M > 0 and it increases
strongly with decreasing ε_.

TABLE II. The values of the shift parameters S0
AB and d0

M as a function of ε_ that yield collapse of the data in Fig. 6 for all diameter ratios
onto a master curve in the shape of a generalized hyperbola.

σBB/σAA = 0.95 σBB/σAA = 0.97 σBB/σAA = 0.99 σBB/σAA = 1.05

ε_ S0
AB d0

M S0
AB d0

M S0
AB d0

M S0
AB d0

M

0 0.035 1.700 0.013 0.650 −0.003 −0.100 0 0
−0.053 0.034 1.730 0.013 0.670 −0.004 −0.085 −0.003 −0.060
−0.111 0.033 1.750 0.013 0.700 0 −0.025 −0.003 −0.135
−0.176 0.033 1.790 0.013 0.745 0.001 0.035 −0.010 −0.190
−0.250 0.032 1.850 0.011 0.805 −0.002 0.110 −0.007 −0.190
−0.333 0.031 1.915 0.013 0.900 0.003 0.245 −0.012 −0.178
−0.379 0.035 1.960 0.013 0.950 0.003 0.305 −0.015 −0.150
−0.429 0.029 2.000 0.011 1.010 0.003 0.385 −0.007 −0.070
−0.481 0.028 2.057 0.010 1.080 0.003 0.465 −0.006 −0.008
−0.538 0.030 2.117 0.010 1.157 0.003 0.555 −0.005 0.100
−0.600 0.030 2.190 0.010 1.250 0.003 0.662 −0.004 0.200
−0.667 – – – – 0.003 0.785 −0.002 0.320
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FIG. 8. Average pair separations dαβ for samples generated at high cooling rates (R = 10−2) for diameter ratios σBB/σAA = 0.95 [(a) and
(b)] and σBB/σAA = 1.05 [(c) and (d)]. (a) and (c) We show dαβ as a function of ε_ at ε̄AB ≈ 1.20. (b) and (d) We show dαβ as a function of ε̄AB

at ε_ = −0.111. The dashed (dotted) lines give the positions of the minima in VAA (VBB), i.e., 21/6σAA (21/6σBB).

In Fig. 7 we show the collapse of all the data in Fig. 5 by
plotting dM − d0

M versus SAB − S0
AB. The master curve has the

following general hyperbolic form:

(� − �c )TQT�Q(� − �c ) = 1, (6)

where � = (SAB − S0
AB, dM − d0

M )T, �c gives the rotation
center, Q is the rotation matrix,

Q =
[

cos θ − sin θ

sin θ cos θ

]
(7)

in the (SAB − S0
AB)-(dM − d0

M ) plane, and 
 is the diagonal
matrix with semi-axis lengths A and B,


 =
[

1
A2 0
0 − 1

B2

]
. (8)

The generalized hyperbolic form has five shape parame-
ters, which take on the values Sc

ab − S0
AB ≈ 0.592, dc

M − d0
M ≈

0.442, θ ≈ −130.6◦, A ≈ 0.382, and B ≈ 0.390 for the mas-
ter curve in Fig. 7. The R-squared value of the fit of all data
in Fig. 7 to Eq. (6) is ≈0.97. These results emphasize that
the two dominant contributions to the glass-forming ability
of binary Lennard-Jones systems are the local chemical order

(where increases in ε̄AB cause increases in SAB and dM) and
the relative difference in the Voronoi volumes of the particles
(where decreases in ε_ cause increases in d0

M).
The asymmetry of the log10 Rc contours in the ε̄AB-ε_ plane

between systems for which the larger particle has larger co-
hesive energy and systems for which the larger particle has
smaller cohesive energy can be further illustrated by compar-
ing the average pair separations dαβ from the rapidly cooled
samples. We show dAA, dAB, and dBB versus ε_ in Fig. 8(a) and
versus ε̄AB in Fig. 8(b) for σBB/σAA = 0.95. We also show the
corresponding data for σBB/σAA = 1.05 in Figs. 8(c) and 8(d).

As expected, at fixed ε_, dAA, and dBB remain nearly con-
stant as ε̄AB varies. In contrast, dAB increases by ≈0.03 as ε̄AB

increases by a factor of 5, as shown in Figs. 8(b) and 8(d).
Thus, increases in the local chemical order and glass-forming
ability caused by increases in ε̄AB are associated with increases
in the interparticle spacing dAB. In contrast, at fixed ε̄AB, dBB

decreases strongly as ε_ decreases from 0 to ≈ −0.7, whereas
dAA and dAB remain nearly constant. [See Figs. 8(a) and 8(c).]
For the system with diameter ratio σBB/σAA = 0.95 [Fig. 8(a)],
the BB bonds shorten as a function of decreasing ε_, while the
AA bonds remain nearly constant with dAA > dBB. For the sys-
tem with diameter ratio σBB/σAA = 1.05, dBB > dAA at ε_ ≈ 0.
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dBB decreases toward dAA with decreasing ε_. Only after dBB <

dAA upon further decreases in ε_ does the glass-forming ability
begin to increase. Thus, bond shortening (where dBB < dAA

and dBB < 21/6σBB) is a key factor that contributes to the
glass-forming ability of binary Lennard-Jones systems.

We note that in the previous studies [31–33], Shimono
and Onodera described computational studies of the glass-
forming ability in binary Lennard-Jones mixtures (using an
8-4 potential). In one set of studies [32,33], both atom types
have the same energetic parameters, but different sizes. With-
out directly measuring the critical cooling rate, these studies
characterized the quality of glass formation as a function of
the atomic size ratio using the potential energy, free volume,
and fraction of atoms that possess local icosahedral order. For
example, they show that better glass formers possess lower po-
tential energy, less free volume, and a larger fraction of atoms
with local icosahedral order. (We show the local icosahedral
order for binary LJ glasses over the full range of energetic
parameters in Appendix B.) They also considered binary mix-
tures with both different atomic sizes and heats of mixing
[31] (but did not consider cohesive energy differences). The
authors suggest that the geometrical differences (i.e., atomic
sizes) more strongly influence the GFA than the energetic
differences. There are several differences between these prior
studies and our current work. First, we directly determine the
critical cooling rate as a function of both the cohesive energy
difference and interaction energy ε_ and ε̄AB for several atomic
size ratios. Second, we show that the energetic parameters
can have a strong influence on the GFA, especially for binary
systems with similar atomic sizes. Third, we determined the
functional form for the critical cooling rate in terms of the
Vornonoi volume differences and chemical order that can col-
lapse all of the simulation data for binary LJ mixtures. Fourth,
we found that bond shortening is an important mechanism for
glass formation in binary LJ mixtures.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

In this work we investigated the physical features that con-
trol the glass-forming ability of equimolar, binary mixtures.
We performed computational studies of binary Lennard-Jones
systems, which enabled us to independently tune the particle
sizes, cohesive, and mixing energies, and determine their ef-
fects on the glass-forming ability, as measured by the critical
cooling rate Rc. We showed four key results. First, the log10 Rc

contours as a function of the normalized mixing energy ε̄AB

and cohesive energy difference ε_ are ellipsoidal in shape for
all diameter ratios. The energetic parameters ε_ and ε̄AB with
the best GFA can be used to select promising BMG-forming
element combinations from the periodic table. We showed
that the Mahalanobis distance dM from a given point in the
ε̄AB-ε_ plane to the center of the ellipse determines the glass-
forming ability of LJ systems. In particular, we find that the
data for all diameter ratios can be described by log10 Rc/R0 =
−d2

M (ε̄AB, ε_), where R0 is a diameter ratio-dependent refer-
ence rate. Second, by studying the structural properties of
the low-temperature systems generated by rapid cooling, we
showed that dM is controlled by the local chemical order
SAB (i.e., deviations of the local composition from the glob-
ally averaged value) and relative Voronoi volume differences

〈�V/VA〉 between particles. In contrast, the local icosahedral
order does not determine the GFA over the full energetic
parameter space. Increases in ε̄AB cause increases in SAB, dM ,
and thus the glass-forming ability. Decreases in ε_ (i.e., ε_ be-
comes more negative) cause increases in 〈�V/VA〉, dM , and the
glass-forming ability. We find that by plotting dM − d0

M versus
SAB − S0

AB, where d0
M and S0

AB are shifts that depend on the
diameter ratio and ε_, we can collapse the data for all diameter
ratios onto a generalized hyperbolic master curve. Third, we
showed that LJ systems for which the larger particles have
larger cohesive energy (σBB/σAA < 1 and εBB/εAA < 1) are
better glass formers than systems for which the larger particles
have smaller cohesive energy (σBB/σAA > 1 and εBB/εAA <

1). We illustrated this point by showing that the system with
σBB/σAA = 1.05 possessed stronger bond shortening, where
the typical interparticle separation dBB was much smaller than
the location of the minimum in VBB, than the system with
σBB/σAA = 0.95.

These results suggest several promising directions for fu-
ture research aimed at understanding the GFA of particle
mixtures. First, we focused here on equimolar, binary LJ
systems. It will be important to understand whether our results
hold over a wide range of compositions, 0 < fB < 1. For
example, is the result that LJ systems for which the larger
particles have larger cohesive energy are the best glass for-
mers also true in systems where the smaller particles are the
majority particle species?

As shown by recent combinatorial sputtering experiments,
the GFA of metallic glasses depends on many physical fea-
tures including the particle size differences, cohesive energy
differences, mixing energy, as well as the elemental atomic
symmetry (i.e., the crystalline symmetry, e.g., fcc, bcc, and
hcp, that forms when the pure substance is crystallized)
[13–15]. In prior studies [21,24] we investigated the effects of
the cohesive energy differences, mixing energies, and atomic
symmetry on the GFA of binary mixtures. However, we did
not include particle size differences in these prior studies. In
future studies we will carry out molecular dynamics simu-
lations of the patchy particle model of binary mixtures with
different atomic sizes to explore the coupling of atomic size
differences to cohesive energy differences and differences in
atomic symmetry in determining the GFA.

Finally, our results highlight the importance of local chem-
ical order and Voronoi volume differences in determining the
GFA of binary LJ systems. In future studies we will investi-
gate the connection between the local chemical order, Voronoi
volume differences, and GFA in ternary and quaternary LJ
systems. In addition, similar computational studies can be
carried out using embedded atom method (EAM) potentials
to determine whether the chemical order and Voronoi volume
differences determine the glass-forming ability in more com-
plex models of binary, ternary, and quaternary alloys.
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FIG. 9. (a) The relative difference in the average potential energy of the inherent structures δĒIS = (EIS(0.95) − E f
IS )/EIS(0.95), from

systems at a given point in the ε̄AB-ε_ plane and σBB/σAA = 0.95 and the same configurations with the particle size switched to σBB/σAA = 1.05.
(b) Similar plot of δĒIS versus Rc except the original samples have σBB/σAA = 1.05 and the swapped samples have σBB/σAA = 0.95. The
horizontal dashed line indicates δĒIS = 0. (c) Rc(0.95)/Rc(1.05) (on a logarithmic scale) plotted versus the relative difference in the average
potential energy of the inherent structures for systems with σBB/σAA = 0.95 and 1.05, �ĒIS = [EIS(0.95) − EIS(1.05)]/EIS(0.95). The solid
line indicates log10[Rc(0.95)/Rc(1.05)] = A�ĒIS − B, where A and B are constants.

APPENDIX A: GLASS STABILITY

We investigate the local potential energy minima for bi-
nary Lennard-Jones systems to better understand the GFA
for different diameter ratios. In general, good glass formers
possess deeper local potential energy minima and higher bar-
riers separating nearby minima. For these studies, we use
the conjugate gradient energy minimization method to take
all of the low-temperature systems obtained by rapid cooling
to the corresponding nearest potential energy minimum, or
inherent structure [34,35]. For each sample we perform two
sets of analyses. We first measure the total potential energy per
particle of the inherent structures EIS(σBB/σAA) of the samples
with the original values of εAA, εAB, εBB, σAA, and σBB. We then
change the sizes of the A and B particles within the original
sample, keep the energetic parameters the same, and minimize
the total potential energy to obtain E f

IS.
In Figs. 9(a) and 9(b) we show the relative change in the

total potential energy of the inherent structures,

δĒIS = EIS(σBB/σAA) − E f
IS

EIS(σBB/σAA)
, (A1)

as a function of Rc, where EIS(σBB/σAA) < 0. δĒIS > 0 in-
dicates that the inherent structures for systems with a given
diameter ratio of the smaller to the larger particles, σBB/σAA <

1 with εBB/εAA < 1, is more stable than those configurations
with the sizes of the particles switched. As shown in Fig. 9(a),
for LJ systems with σBB/σAA = 0.95, δĒIS > 0, which indi-
cates that LJ systems with σBB/σAA = 0.95 are more stable
than similar configurations with σBB/σAA = 1.05 and the same
energetic parameters.

In contrast, in Fig. 9(b), we show that for LJ systems
with σBB/σAA = 1.05, most of the data satisfies δĒIS < 0 or
δĒIS ∼ 0 when δĒIS > 0. Thus, LJ systems for which the
smaller particles have larger cohesive energy possess inher-
ent structures that are typically less stable than those for the
opposite case (where the larger particles have larger cohesive
energy).

We also compare the logarithmic differences in the critical
cooling rates, log10 Rc(0.95)/Rc(1.05), to the relative differ-
ence in the inherent structure energy,

�ĒIS = EIS(0.95) − EIS(1.05)

EIS(0.95)
, (A2)

for LJ systems with σBB/σAA = 0.95 and 1.05 in Fig. 9(c).
We find an approximate linear correlation between
log10[Rc(0.95)/Rc(1.05)] and �ĒIS, which indicates
Arrhenius dependence of the critical cooling rate on the
inherent structure energy. Thus, LJ systems with lower
inherent structure energy possess better glass-forming ability.

APPENDIX B: LOCAL ICOSAHEDRAL ORDERING

Numerous previous studies [31–33,36] have correlated
local polytetrahedral order, mainly local icosahedral order
(ICO) of the atomic positions and the GFA of alloys. Here
we also calculated the fraction of atoms that possess local
icosahedral order ( fICO) for these binary glasses over the full
ε_ and ε̄AB parameter space. To determine the local icosahe-
dral order, we calculate Voronoi tessellations of each atomic
configuration and the fraction of atoms with Voronoi indices
〈0, 0, 12, 0〉, where ni in the set 〈n3, n4, n5, n6〉 represents the
number of i-edged faces of each Voronoi cell. We show results
for fICO for two atomic size ratios (σBB/σAA = 0.95 and 1.05
in Fig. 10). Consistent with prior results, the systems with
σBB/σAA = 0.95, which have much better glass-forming abil-
ity than those with σBB/σAA = 1.05, generally possess larger
values of fICO over the full range of ε_ and ε̄AB. fICO generally
increases, and Rc generally decreases with decreasing ε_.

However, we also show results indicating that fICO is not
always strongly correlated with the GFA. For example, fICO

displays nonmonotonic behavior with increasing ε̄AB, whereas
the GFA is monotonic with increasing ε̄AB. Figure 10 shows
that the local icosahedral order is not strongly favored at large
values of ε̄AB, where local chemical order controls the GFA as
shown in Fig. 5 of the main text.

075601-10



GLASS-FORMING ABILITY OF BINARY LENNARD-JONES … PHYSICAL REVIEW MATERIALS 6, 075601 (2022)

FIG. 10. Fraction fICO of atoms with local icosahedral order (increasing from blue to red) plotted as a function of ε_ and ε̄AB for (a)
σBB/σAA = 0.95 and (b) σBB/σAA = 1.05 for binary LJ systems at cooling rate R = 10−2.

In addition, in prior studies we developed a patchy particle
LJ model that favors the formation of local icosahedral order
[21]. In this prior work we showed that the critical cooling
rate varied nonmonotonically with increasing local icosahe-
dral order, since sufficiently large icosahedral order favors the

formation of quasicrystals and Laves phases, which reduces
the GFA [37,38]. In contrast, in the current work, we find
strong correlations between the GFA, the Voronoi volume
differences, and the chemical order over the full range of ε_

and ε̄AB parameter space for binary LJ mixtures.
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