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Characterizing the mechanical response of metallic glasses to uniaxial tension
using a spring network model
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A coarse-grained spring network model is proposed for the prediction of the mechanical response of metallic
glasses as a function of the microstructure prior to loading. This model describes the mechanical response of
metallic glasses using a network of parallel springs that can break and reform, mimicking atomic rearrangements
during deformation. We compare predictions of the spring network model for stress versus strain to results from
numerical simulations of athermal quasistatic, uniaxial tensile deformation of Cu50Zr50 metallic glasses using
Lennard-Jones (LJ) and embedded atom method (EAM) atomic interactions. We show that both the LJ and EAM
models possess qualitatively similar stress σ versus strain γ curves. By specifying five parameters [ultimate
strength, strain at ultimate strength, slopes of σ (γ ) at γ = 0 and at large strain, and strain at fracture where
σ = 0], we demonstrate that the spring network model can accurately describe the form of the stress-strain
curves during uniaxial tension for the computational studies of Cu50Zr50, as well as recent experimental studies
of several Zr-based metallic glasses.
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I. INTRODUCTION

Bulk metallic glasses are alloys with amorphous atomic
structure. Since they possess larger values for the strength
and elastic limit compared to those for conventional crys-
talline alloys, they represent a promising class of structural
materials [1]. Tensile loading is a common and important
loading geometry for understanding the mechanical response
of metallic glasses [2–10]. Under tensile loading, metallic
glasses at room temperature are typically brittle. Shear bands,
or localized regions of large strain, form during deformation
that can lead to failure of the material [2]. As an example
of this behavior, in Fig. 1(a), we show the engineering stress
σ versus engineering strain γ from recent experiments that
perform uniaxial tension tests on sputtered ZrNiAl metallic
glasses [3]. The more ductile sample has an ultimate strength
of σm ∼ 1.5 GPa and fractures at γ f ∼ 11.6%, whereas the
more brittle sample has an ultimate strength of σm ∼ 1.7 GPa
and fractures at γ f ∼ 8%. The two samples were fabricated
using similar processes, but the more brittle sample was an-
nealed at a temperature below the glass transition temperature
Tg for 24 hours after fabrication. Many factors have been
shown to affect the tensile plasticity of metallic glasses, such
as the cooling history [4], sample size [3,5–7], strain rate
[8–10], and temperature [9,10] at which the testing occurs.
In general, larger samples, samples prepared at lower cooling
rates, and samples tested at lower temperatures are more brit-
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tle. In addition, experiments on bending and compression of
metallic glasses have shown that their mechanical response is
influenced by changes in chemical composition [11–13]. For
example, adding 5% of Al atoms into Cu50Zr50 bulk metal-
lic glasses increased the failure strain from 7.9% to 18% in
compression tests [13]. Also, Pd-based bulk metallic glasses
were found to be brittle when formed at low cooling rates,
whereas Pt-based bulk metallic glasses are ductile regardless
of the cooling rate used to prepare the samples [11]. Because
there are so many factors that influence the microstructure
of metallic glasses, it is difficult to predict the mechanical
response of metallic glasses to applied deformations.

The mechanical response of metallic glasses is controlled
by the atomic interactions and motions that arise from
applied deformations. Numerous molecular dynamics (MD)
simulation studies have shown that the mechanical response
of metallic glasses to applied deformations involves highly
collective and nonaffine atomic motions that are spatially
and temporally correlated [14–25]. To understand the
mechanical response of metallic glasses at larger length
scales, coarse-grained mesoscale models have been developed
[18,26–28]. For example, elastoplastic models consider
metallic glasses as a collection of mesoscopic elements,
where each element deforms elastically until it reaches its
local yield strain [26,29–31]. After yielding, the elements
redistribute their stress to neighboring elements and the
stress is reset to the largest value in the elastic state. Further,
elaborations of elastoplastic models have coupled the shape
of the yield strain distributions to the evolving microstructure
during applied deformation [32]. Several studies have shown
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that elastoplastic models can describe the stress-strain curves
for model Lennard-Jones (LJ) glasses undergoing simple
shear over a range of strain rates [32–34].

Theoretical models for the irreversible atomic motions that
occur during applied deformation can be used to improve
elastoplastic descriptions of metallic glasses. For example,
the plastic strain can be calculated by identifying shear trans-
formation zones (STZs), or groups of atoms that undergo
collective, nonaffine motion in response to applied deforma-
tions [18,24,35–41]. Manning et al. [42] derived a system
of ordinary differential equations (ODEs) for the deviatoric
stress and an effective temperature that controls the STZ den-
sity in computational studies of LJ glasses undergoing simple
shear. The system of ODEs includes seven parameters, such as
the initial and steady-state effective temperature, characteris-
tic size of an STZ, and effective temperature diffusivity, which
are chosen so that the predicted stress versus strain and degree
of strain localization match the behavior in the numerical sim-
ulations. Similar studies have coupled elastoplastic and STZ
descriptions to describe the stress versus strain in molecular
dynamics simulations of embedded atom method potentials
for Cu50Zr50 undergoing simple shear [43].

Free volume descriptions have also been employed to
predict the stress versus strain curves for metallic glasses un-
dergoing homogeneous deformation near the glass transition
temperature [44–46]. Parameters in this model are determined
by performing deformation studies at several different strain
rates. The free volume model has been able to recapitulate
the stress versus strain curves for Zr-based metallic glasses
undergoing compression over a range of strain rates. However,
the free volume model has not been generalized so that it can
describe serrated stress versus strain curves associated with
shear localization or brittle fracture. Serrated stress versus
strain curves are frequently observed in experimental studies
of metallic glasses deformed at temperatures well below the
glass transition temperature and at low strain rates [47–49].

The fiber bundle model [50–52] was originally developed
to describe fibrous materials under tension, but it has also
been used to describe amorphous solids undergoing tensile
loading [53,54]. The fiber bundle model is a coarse-grained,
one-dimensional model that considers fibers in parallel
under a constant load. An individual fiber breaks when
its extension exceeds a randomly selected cutoff, and its
load is then redistributed to neighboring fibers. This model
displays brittle, quasibrittle, and ductile failure modes as a
function of the heterogeneity in the failure thresholds and
the length scale over which the stress is redistributed after
local failure [53]. Key differences between the fiber bundle
and elastoplastic models are that each fiber only experiences
elastic deformation before yielding and there is no stress
recovery within a fiber after it yields.

In this article, we develop a spring network model to
describe the mechanical response of metallic glasses to ten-
sile loading. We use this model to describe the mechanical
response from numerical simulations of Cu50Zr50 glasses
undergoing athermal, quasistatic tension tests, as well as
experimental studies of several Zr-based metallic glasses un-
dergoing tensile loading at finite temperature [3,6,10]. The
binary alloy Cu50Zr50 is chosen for the numerical simulations
as it is one of the few binary alloys that form bulk metallic

glasses [55] with a critical cooling rate of Rc ∼ 250 K/s
[56]. The spring network model includes a large number
Ns of initially unstretched springs in parallel prior to the
applied deformation. Similar to the fiber bundle model, the
springs break when their stretching exceeds a cutoff. However,
unlike the conventional fiber bundle model, at each strain
step, new springs form, contributing to the stress that resists
the tensile load. In the Ns → ∞ limit, we derive an ana-
lytical form for the stress σ versus strain γ for the spring
network model undergoing tensile loading. This expression
includes five important parameters: the ultimate strength,
strain at which this occurs, slopes of σ (γ ) at zero and at large
strain, and failure strain at which σ = 0. This expression for
σ (γ ) accurately describes the mechanical response of both
Lennard-Jones (LJ) and embedded atom method (EAM) mod-
els for Cu50Zr50 metallic glasses under athermal, quasistatic
tension tests. Furthermore, we also show that σ (γ ) obtained
from the spring network model can accurately describe the
mechanical response of several Zr-based metallic glasses,
including Zr65Al10Ni10Cu15, Zr56Ni22Al22, and Cu49Zr51 at
finite temperature and nonzero strain rate, obtained in recent
experimental studies [3,6,10]. Even though the differences in
system size, temperature, and strain rate between the simu-
lation and experimental studies give rise to key differences in
the stress versus strain curves, the spring network model (with
different sets of parameters) can accurately recapitulate their
stress versus curves. These results emphasize the versatility
and generality of the spring network model.

II. METHODS

In this section, we first introduce the cooling and structural
relaxation protocols to prepare Cu50Zr50 metallic glasses with
different amounts of local positional order in the numerical
simulations. We also describe the simulation method for ap-
plying the tensile deformation to the metallic glass samples.
We then present the spring network model, derive an analyt-
ical expression for the stress versus strain σ (γ ), and relate
the five parameters in the spring network model to important
features of σ (γ ).

A. Generating metallic glasses with different amounts
of positional order

We focus on Cu50Zr50 systems modeled using Lennard-
Jones (LJ) and embedded atom method (EAM) atomic
interactions (see Appendix A). Each system contains N =
3456 atoms confined within a cuboidal box with periodic
boundary conditions in the x, y, and z directions. We show
in Appendix B that above this system size σ (γ ) is insensitive
to N for all preparation protocols. Several previous numerical
studies have shown that it is difficult for metallic glass samples
with small aspect ratios (defined as the ratio between the ini-
tial sample length along the deformation direction to the initial
length in directions perpendicular to deformation to form
shear bands [57–59]). We chose aspect ratios Lz/Lx = 1/2
and Lz/Ly = 1/2 to avoid large-scale shear-band formation
that leads to catastrophic failure in the numerical simula-
tions. (Note that tensile loading is applied in the z direction.)
For Cu50Zr50 metallic glasses, we verify in Appendix C that
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samples with larger initial aspect ratios and prepared using
slow cooling rates display shear banding when they are sub-
jected to athermal, quasistatic tensile loading.

To prepare the metallic glass samples, we first equili-
brated the systems at high temperature above the melting
temperature, T > Tm, and then cooled them linearly to low
temperature T0 < 1 K at constant low pressure P0 that is sev-
eral orders of magnitude below the maxima in the shear stress
versus strain curves (obtained from uniaxial tension) using
the Nosé-Hoover thermostat and barostat. The equations of
motion are integrated using a modified velocity-verlet algo-
rithm with time step �t = 10−3 ps. The cooling rates spanned
four orders of magnitude from 1010 to 1014 K/s, but remain
much larger than the critical cooling rate Rc ∼ 250 K/s for
Cu50Zr50. After thermally quenching the samples, they were
decompressed and potential energy minimized using the con-
jugate gradient method to reach P = P0 and zero temperature.
The maximum total force on an atom after potential energy
minimization was 10−10 eV/Å. We also performed instan-
taneous thermal quenches by equilibrating the systems at
T > Tm and then minimizing the total potential energy at a
constant volume that corresponds to P = P0.

We performed the thermal quenching studies at different
cooling rates so that we can explore the mechanical response
of Cu50Zr50 metallic glasses with different degrees of
ductility. In addition to thermally quenched glasses, we also
generated disordered face-centered cubic (FCC) structures
to further enhance the ductility of the metallic glass samples
under uniaxial tensile deformation. We first placed Zr and
Cu atoms randomly on an FCC lattice (while maintaining
the correct stoichiometry for Cu50Zr50) followed by potential
energy minimization. The FCC lattice is unstable for random
mixtures of Cu and Zr, and thus potential energy minimization
induces positional disorder. [Note that pure Cu forms FCC
and pure Zr forms hexagonal close packed (HCP) crystalline
structures.]

B. Athermal, quasistatic uniaxial tension

After generating the Cu50Zr50 metallic glass samples, we
perform athermal, quasistatic uniaxial tension tests. In par-
ticular, we apply successive small uniaxial strain steps of
δγ = 10−4 along the z direction by increasing the sample
length from its current value Lz to L′

z = Lz + �Lz and shifting
the z positions of the atoms affinely such that z′

i = zi(1 + δγ )
[as shown in the inset of Fig. 1(b)]. Each strain step is fol-
lowed by potential energy minimization. �Lz = Lz0δγ and
Lz0 is the original length of the sample in the z direction.
Before applying the tensile deformations, we open the bound-
aries in the x and y directions to allow necking of the sample.
To remove the residual stress caused by opening the bound-
aries, we apply athermal, quasistatic tension or compression
in the z direction until the engineering stress is zero. We then
apply athermal, quasistatic tensile deformation in small strain
steps until the total strain reaches γ = 1.

C. Calculating the engineering stress

During uniaxial tensile deformation, the thickness of the
metallic glasses becomes length dependent due to necking of
the sample. The true stress is defined as the total force in the

FIG. 1. Engineering stress σ plotted vs engineering strain γ from
(a) experiments and (b) simulations of metallic glasses undergoing
uniaxial tension. The data in (a) is from sputtered Zr56Ni22Al22

metallic glasses [3] with (black) and without (red) annealing at tem-
peratures below the glass transition for 24 hours. The data in (b) is
from athermal, quasistatic uniaxial tension simulations of Cu50Zr50

modeled using EAM interactions generated at cooling rates R =
1010 K/s (black) and 1013 K/s (red) and averaged over 50 samples.
The inset shows the geometry used in the simulations. The samples
have periodic boundaries in the z direction that are moved vertically
to apply tensile deformations and open boundaries in the x and y
directions.

z direction divided by the cross-sectional area of the sample
at each strain. Thus, the true stress is difficult to calculate
since we would need to accurately describe the surface of
the deformed sample. In contrast, the engineering stress is
defined as the total force in the z direction divided by the
undeformed cross-sectional area, which is nearly uniform over
the length of the sample. We show typical engineering stress
versus strain curves for thermally quenched Cu50Zr50 metallic
glasses modeled using the EAM potential in Fig. 1(b).

To calculate the engineering stress, we consider the total
force in the z direction crossing the x-y plane in the sample
[60,61] at z = z′. Note that any x-y plane in the sample gives
the same total force in the z direction because the system is in
force balance. The total force in the z direction crossing the z′
plane is

Fzz′ =
∑
i, j

Fi jz, (1)

where Fi jz is z component of the force �Fi j on atom i from
other atoms j, and the sum only includes atom pairs i and j
such that �ri j intersects the plane z = z′. Since �Fi j = − �Fji, the
sum of Fi jz only includes the force on atom i or j that has
the lower z-coordinate than the other atom. We define our
coordinate system such that −Lz/2 � z � Lz/2, and thus we
set z′ = 0. Since Lz/2 > rc for both the LJ and EAM models,
atoms only interact across the plane z′ = 0 and not through
the periodic image cells. The total force in the z direction
across the plane z′ = 0 is the z component of the total force on
atoms in the lower region (z′ < 0) arising from interactions
with atoms in the upper region (z′ > 0).

For LJ interactions, �Fi j = −(dU/dri j )r̂i j . For EAM inter-
actions, the force on atom i from j is

�Fi j = −[
(∂Fi/∂ρi )(∂ρi/∂ri j ) + (∂F j/∂ρ j )(∂ρ j/∂ri j )

+ (
∂φ

p
i j

/
∂ri j

)]
r̂i j, (2)
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FIG. 2. Two definitions of the engineering stress σF = Fzz′ Lz/A0

and σS = Szz/A0 plotted against each other. Fzz′ is the total force
in the z direction crossing the z′ plane [Eq. (1)] and Szz is the zz
contribution to the virial Szz [Eq. (3)]. A0 is the undeformed area of
the sample and Lz is its length in the z direction. Data from uniaxial
tension tests on Cu50Zr50 modeled using LJ (red circles) and EAM
interactions (blue crosses) are included. The solid black line indicates
that σF = σS .

which includes two additional terms arising from the embed-
ding function Fi and where ρi = ∑

j �=i ρi j (ri j ) is the electron
density of atom i at position �ri and φ

p
i j is the EAM pair

potential energy function. We then define the engineering
stress, σF = Fzz′/A0, where A0 is the cross-sectional area of
the undeformed sample. We first determine the α shape of
the undeformed sample, and then calculate its volume V0 and
A0 = V0/Lz0. We find that the relative fluctuations in A0 are
less than 0.6% for all preparation protocols and both LJ and
EAM interactions.

We also compared the results for σF to the results for the
engineering stress obtained using the zz component of the
virial stress tensor,

Szz =
N∑

i=1

ziFiz. (3)

In terms of Szz, the engineering stress is defined as

σS = Szz

Lz0A0
. (4)

In Fig. 2, we show that, as expected, σF = σS for uniaxial
tension applied to Cu50Zr50 metallic glass samples modeled
using the LJ and EAM interactions. Below, we use σ ≡ σF to
display the engineering stress.

D. Spring network model

We now describe the key elements of the spring network
model, which are illustrated in Fig. 3. In the undeformed state
at γ = 0, the sample is in mechanical equilibrium, the atoms
are in their equilibrium positions with an initial set of nearest
(Voronoi) neighbors, and the engineering stress σ is zero. As

FIG. 3. Engineering stress σ as a function of strain γ from a
uniaxial tension test of a Cu50Zr50 sample generated using the EAM
model at cooling rate R = 1010 K/s. The local regions in the three
insets (a)–(c), which show the nearest (Voronoi) neighbors of a
specified central atom (magenta), are taken from systems with total
engineering stress labeled (a)–(c) in the main plot. Between total
strain (a) γ = 0 and (b) 0.0143, there is no change in the (blue)
nearest neighbors of the selected central atom. After a large atomic
rearrangement event at (c) γ = 0.0144, some of the atoms that were
nearest neighbors of the central atom in (a) and (b) are no longer
nearest neighbors (grey). The central atom also gains new nearest
neighbors (red) that were not nearest neighbors at γ = 0.

the uniaxial strain γ is applied, σ increases roughly linearly.
Small drops in σ occur prior to point (b), but the nearest
neighbors of the selected central atom remain the same as
they were at γ = 0. Between points (b) and (c), a large en-
gineering stress drop occurs, which corresponds to an atomic
rearrangement event where five atoms are no longer nearest
neighbors of the central atom, and two new atoms become
nearest neighbors of the central atom. Changes in the nearest
neighbors of atoms can occur throughout the sample and at
various strain steps during uniaxial tension deformation. In-
spired by these atomic rearrangement events, we develop a
mesoscopic one-dimensional spring network model that con-
siders the breaking and forming of springs in parallel during
deformation. The breaking (formation) of a spring represents
a loss (gain) of nearest-neighbor atoms in a local region. The
total force (in the z direction) resisting the extension of the
sample will be related to the number of springs at each strain
step and how much each spring is stretched. Our goal is to
develop a simple model with a small number of parameters,
yet we want it to possess a sufficient number of parameters
so that it is able to quantitatively characterize the mechanical
response of metallic glasses.
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FIG. 4. (a) Schematic of the spring network model. In the undeformed sample at γ = 0, Ns = N0 identical springs are initially connected
in parallel with spring constant k and can transmit force in the (vertical) pulling direction. After a single step in uniaxial strain γ = δγ , Nb(δγ )
springs break according to each spring’s cutoff strain γc, which is drawn randomly from a Gamma distribution. The breaking of a spring, which
represents an atomic rearrangement event (atoms change color from blue to gray), prevents that spring from transmitting force in the pulling
direction. Also, during an atomic rearrangement event, Nn(δγ ) springs can form and begin to transmit force (atoms change color from gray to
red). (b) The probability distribution of spring breaking cutoff strains P(γc ), which converges to a Gamma distribution in the N0 → ∞ limit
(dotted line). In this example, the two parameters for P(γc ) are α = 2.7 and β = 0.02. (c) The number of new springs Nn(γ ) as a function of
strain γ . At each strain, Nn(γ ) ∼ N p

n (γ )p springs form on average, where N p
n (γ ) is the number of potential new springs that can form and p is

the probability that these new springs are instantiated. We show data for p = 0.1 and N p
n (δγ ) = 103. In the N p

n → ∞ limit, Nn(γ ) converges
to the black dotted line with vertical intercept pN p

n (δγ ) and slope p(dN p
n /dγ ).

The spring network model is summarized in Fig. 4(a). Ini-
tially, we assume that there are Ns = N0 identical, unstretched
springs in parallel, each with spring constant k and rest length
l0. After each applied step strain, we assume that all springs
experience the same amount of strain δγ . Thus, the force
experienced by spring j after a total strain γ j is F j = kl0γ j .
Each spring is assigned a cutoff strain γc > 0, which is the
total strain at which the spring breaks. Numerical simulations
of strained and unstrained glasses suggest that the mean value
of the strain 〈γc〉 at which the first plastic event occurs, de-
creases as a power law with the increasing number of atoms
N : 〈γc〉 ∼ N−0.6 [62,63]. Hence, these numerical simulations
suggest that in the spring network model, we should choose a
distribution P(γc) such that 〈γc〉 → 0 in the Ns → ∞ limit.
Furthermore, it has been shown that the distribution of the
critical strains, at which the first plastic event occurs (i.e., the
weakest spring in the spring network model), obeys a Weibull
distribution [62]. However, in the spring network model, we
not only consider the first plastic event, but the plastic events
at all strains during the tension tests. We assume that the cutoff
strain of individual springs follows an exponential distribution
and that an integer number α of springs break within a set of
Ns springs simultaneously. The distribution of the sum of an

integer number α of independent and identically distributed
random cutoff strains gives an Erlang distribution function,
i.e., the Gamma distribution with integer shape parameter α.
When considering an ensemble of initial samples, the integer
α can vary from sample to sample. For a noninteger average
α, P(γc) becomes a Gamma distribution. Therefore, γc is
randomly selected from a Gamma distribution,

P(γc) = βα

�(α)
γ α−1

c e−βγc , (5)

where �(.) is the Gamma function. P(γc) has two parameters,
the shape parameter α and rate parameter β, that give rise to
the mean α/β and variance α/β2 [see Fig. 4(b)]. Selecting
cutoff strains from P(γc) gives a coarse-grained representation
of the structural disorder in metallic glasses, such as fluctua-
tions in the values of �ri j · ẑ for interacting atomic pairs. When
a given spring breaks, the force on that spring is set to zero.

At each strain step, new springs can also form. We assume
that the number of potential new springs decreases linearly
with the total strain,

N p
n (γn) = N p

n (δγ ) − dN p
n

dγ
γn−1, (6)
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where γn = nδγ is the total strain after n strain steps. This
form for N p

n (γn) is consistent with the fact that the cross-
sectional area decreases with increasing uniaxial strain, and
thus there are fewer atoms in the transverse direction for form-
ing new spring connections. [We also considered quadratic
and piecewise linear functions for N p

n (γn), which include an
additional parameter. However, the form in Eq. (6) provided
high-quality fits to the data from simulations of athermal,
quasistatic uniaxial tension.] The potential new springs form
instantiated new springs with probability p. The scatter plot in
Fig. 4(c) shows the number of new springs Nn(γn) = pN p

n (γn)
as a function of total strain γn for p = 0.1 and N p

n (δγ ) = 103.
When a new spring is formed, it is initiated with the same
rest length l0 and γc is randomly selected from the same
P(γc) regardless of the total strain. Newly formed springs also
experience the same incremental strain δγ at each applied
strain step.

The total force of the spring network at total strain
γn = nδγ is

Fs(γn) =
Ns∑
j=1

kl0γ
j

n , (7)

where γ
j

n is the total strain experienced by the jth spring after
n strain steps applied to the initial undeformed sample, which
differs from the total strain γn for springs that were not present
at γ = 0. Thus, to calculate the total force for the spring
network model at γn, we need to track the number of initial
springs that are still intact at γn, the number of new springs
that have formed since γ = 0, and at what strains each of these
new springs form.

The engineering stress versus strain curve σ (γ ) for uniax-
ial tension for a single Cu50Zr50 metallic glass sample using
the EAM model with N = 3456 atoms includes numerous
rapid drops in stress as shown in Fig. 3. Several studies have
shown that for metallic glasses undergoing athermal, qua-
sistatic deformation, the size of the stress drops decreases and
the number of stress drops increases with increasing system
size. To mimic the large-system limit, we can calculate the
ensemble-averaged σ (γ ) from the numerical simulations of
the LJ and EAM models over many realizations. The results
for σ (γ ) from the spring network model in the large-system
limit can be obtained by taking the limits Ns → ∞ and
N p

n → ∞. In this limit, we can derive an analytical expression
for the total force in the spring network model [Eq. (7)], and
compare it to σ (γ )A0 obtained from the athermal, quasistatic
tension tests of Cu50Zr50 samples modeled using the LJ and
EAM interaction potentials.

If N0 springs are initialized at γ = 0, the number of these
springs that have not broken after strain γn is N (γn) = N0[1 −
C(γn)], where C(γn) is the cumulative distribution function
for the Gamma distribution. Since these springs experience
the same total strain, we can calculate the total force from the
remaining springs at γn,

Fs0(γn) = kl0γnN0[1 − C(γn)]. (8)

In the limit N p
n → ∞, the number of new springs that form

Nn(γn) can also be derived. Using Eq. (6), we find

Nn(γn) = pN p
n (γn) = Nn(δγ ) − dNn

dγ
γn−1. (9)

To calculate the total force from the newly formed springs,
we need to take into account the fact that Nn(γn) new springs
are generated at γn and these springs break after an additional
strain of γc, which is selected randomly from a Gamma dis-
tribution. The total force arising from the new springs at γn is

Fsn(γn) = kl0

n−1∑
i=0

(
Nn(δγ ) − dNn

dγ
(γn−1 − γi )

)
γi[1 − C(γi )],

(10)

where Fsn(γ0) = 0. Thus, the total force in the spring network
at strain γn is given by

Fs(γn) = Fs0(γn) + Fsn(γn), (11)

where Fs0 and Fsn are provided in Eqs. (8) and (10), respec-
tively. Taking the continuum limit in strain and normalizing
the spring force by the sample’s undeformed cross-sectional
area A0 allow a comparison to the engineering stress versus
strain obtained in the simulations of athermal, quasistatic uni-
axial tensile deformations,

σs(γ ) = Fs(γ )/A0. (12)

E. Comparison of the predictions of the spring network model
and results from atomistic simulations

The engineering stress σs in Eq. (12) from the spring net-
work model has five parameters. These include the number of
initial springs N0, number of new springs that are formed dur-
ing the first strain step Nn(δγ ), and the change in the number
of new springs that are formed per strain step dNn/dγ . In ad-
dition, the cumulative distribution C(.) that controls the cutoff
strain is characterized by two parameters, α and β. Motivated
by σ (γ ) from experiments and simulations of uniaxial tension
of metallic glasses in Fig. 1, we can now relate these five
parameters from the spring network model to five key features
of the shape of the engineering stress versus strain curve
illustrated in Fig. 5: (1) the slope of the engineering stress
Gi = dσs/dγ at γ = 0, (2) the ultimate strength σm = σs(γm),
(3) the strain γm at ultimate strength, (4) the failure strain γ f at
which σs(γ f ) = 0, and (5) the slope of the engineering stress
G f = dσs/dγ at γ f . The following five equations:

dσs(0)

dγ
− Gi = 0, (13a)

σs(γm) − σm = 0, (13b)

dσs(γm)

dγ
= 0, (13c)

σs(γ f ) = 0, (13d)

dσs(γ f )

dγ
− G f = 0, (13e)

can be used to express the parameters in the spring network
model, N0, Nn(δγ ), dNn/dγ , α, and β, in terms of the shape
features of σs(γ ), i.e., Gi, σm, γm, γ f , and G f . We then use
a Levenberg-Marquardt nonlinear least squares algorithm to
find the optimal values of Gi, σm, γm, γ f , and G f such that
σs(γ ) matches σ (γ ) from the athermal, quasistatic tension
simulations, as well as from uniaxial tension tests of Zr-based
metallic glasses in experiments.
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FIG. 5. Schematic of the engineering stress σ versus strain γ

during uniaxial tension, including the definitions of the five param-
eters that characterize the shape of σ (γ ). Gi is the slope of σ (γ )
at γ = 0, σm is the maximum engineering stress, γm is the strain at
which the maximum engineering stress occurs, σ (γm ) = σm, γ f > 0
is the failure strain at which σ = 0, and Gf is the slope of σ (γ ) at
γ = γ f .

III. RESULTS

In this section, we first describe the results from athermal,
quasistatic simulations of the mechanical response of the LJ
and EAM models of Cu50Zr50 metallic glasses to uniaxial
tension. We also show the correlation between the maximum
engineering stress during uniaxial tension and the potential
energy per atom of the undeformed samples. We then compare
the simulation results for σ (γ ) from athermal, quasistatic
uniaxial tension to the prediction of the engineering stress
versus strain from the spring network model. We show the
dependence of the five parameters of the spring network
model on the sample preparation protocol and relate these

parameters to key features of the shape of σ (γ ). Lastly, we
show best fits of the spring network model to the results of
experiments on uniaxial tension applied to several Zr-based
metallic glasses, including Zr65Al10Ni10Cu15, Cu49Zr51, and
Zr56Ni22Al22.

A. Engineering stress versus strain from athermal,
quasistatic uniaxial tension

In Fig. 6, we show σ (γ ) for the LJ and EAM models
of Cu50Zr50 metallic glass samples obtained from thermal
quenches over a range of cooling rates, instantaneous thermal
quenches, and disordered FCC structures. The LJ and EAM
models show qualitatively similar mechanical response over
the full range of strain. For all systems, at small strains, the en-
gineering stress increases approximately linearly with strain.
The slope dσ/dγ = Gi at γ = 0 is only weakly dependent
on the preparation protocol of the metallic glasses. At larger
strains, σ (γ ) becomes nonlinear and reaches a peak engi-
neering stress σm that grows monotonically with decreasing
cooling rate, i.e., σm is smallest for samples generated via
instantaneous thermal quenches and is the largest for samples
generated via the slowest cooling rates.

The disordered FCC structures possess the smallest σm of
the systems in Fig. 6 and the strain at which the peak stress
occurs is shifted to larger strains γm ∼ 0.2 compared to the
peak strains for the thermally quenched systems. At first,
these results may seem counterintuitive. For example, it is
well-known that many crystalline structures possess large
peak stress at small strains and can be brittle with a rapid
decrease in stress near failure. However, as shown in Fig. 16
in Appendix D, the disordered FCC structures have the largest
Q6 values, yet they are the most ductile of the systems we
considered.

To illustrate why disordered FCC structures have a ductile-
like response, we show a scatter plot of σm during uniaxial
tension versus the total potential energy per atom U0 and

FIG. 6. Engineering stress σ plotted as a function of strain γ during uniaxial tension deformation of Cu50Zr50 metallic glass samples (solid
lines) obtained using the (a) LJ and (b) EAM models for several cooling rates, the instantaneous thermal quenches, and the disordered FCC
structures averaged over 50 samples. The dotted lines represent best fits of σ (γ ) to the prediction from the spring network model [Eq. (12)]
using the parameters in Fig. 9.
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FIG. 7. Maximum engineering stress σm during athermal, quasistatic uniaxial tension tests plotted vs the total potential energy per atom U0

at γ = 0 for 50 Cu50Zr50 metallic glass samples modeled using the (a) LJ and (b) EAM potentials. In addition, we plot the same data for σm in
(a) and (b) vs the fraction of icosahedra Fico based on Voronoi tessellation of the undeformed structure for the (c) LJ and (d) EAM potentials.
The rightward triangles and stars represent instantaneous thermal quenches and disordered FCC structures and the other symbols represent
different cooling rates R used to prepare the samples.

versus the fraction of local icosahedral structures Fico of the
corresponding undeformed samples in Fig. 7. (The definition
of Fico is provided in Appendix D.) For both the LJ and EAM
models, σm decreases with increasing U0 and decreasing Fico

on average. In particular, we find that the disordered FCC
structures possess the highest U0 and the smallest Fico and
σm values. The results for the thermally quenched systems are
consistent with prior results on metallic glasses. In particular,
numerous studies have found that the fictive temperature and
average potential energy per atom decrease with decreasing
cooling rate [64], while the fraction of icosahedra increases
with decreasing cooling rate [25,65], and that increasing the
fictive temperature increases the ductility of metallic glasses
[11,66,67]. In the current studies, we have shown that the
disordered FCC structures possess higher fictive temperatures
(or U0) than the samples that were prepared via instanta-
neous thermal quenches. Another important feature of σ (γ )
for both the LJ and EAM models of Cu50Zr50 is that it de-
creases roughly linearly with strain at large strains with slope
|G f | < Gi. Further, σ (γ ) is independent of the preparation
protocol at large strains.

B. Comparisons to prediction of spring network model

Fits of the predictions of the spring network model to
the stress versus strain curves from simulations and ex-

periments involve five parameters: kl0N0/A0, kl0Nn(δγ )/A0,
kl0(dNn/dγ )/A0, α, and β. However, kl0N0/A0 is set to the
slope of σ (γ ) at γ = 0 and remains constant during the fitting
procedure. The shape parameter α for the Gamma distribution
of cutoff strains P(γc) is initially set to 1, assuming that only
one spring breaks at a time during the tensile test, and the
initial value of the rate parameter β for P(γc) is set to α/γm.
In Fig. 6, we show the best fits of σs for the spring network
model to σ (γ ) from the simulations of athermal, quasistatic
uniaxial tension for the LJ and EAM models of Cu50Zr50 for
all sample preparation protocols. In general, different initial
values of these parameters give rise to very similar fitting
parameters and the fits are high quality for both the LJ and
EAM models for all preparation protocols. The only dis-
crepancy occurs for the slowest cooled samples, where the
fit slightly underestimates σm. [This small discrepancy can
be removed by generalizing the distribution of strain cutoffs
P(γc) to include an additional shape parameter.] To assess the
quality of the fits of the predicted σs(γ ) for the spring network
model to σ (γ ) from the atomistic simulations, we calculate
the root-mean-square error,

〈�σ 〉 =
√∑n

i=1 (σ (γi) − σs(γi))2

n
, (14)
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FIG. 8. (a) Engineering stress σ plotted as a function of strain γ for athermal, quasistatic simulations of uniaxial tension on LJ models
of Cu50Zr50 metallic glasses obtained from four cooling rates, R = 2.6×1011, 2.6×1012, 2.6×1013, and 2.6×1014 K/s (with decreasing σm).
From the slowest to fastest cooling rates, the σ (γ ) curves are vertically shifted by 1.5, 1, 0.5, and 0 GPa. We also show fits of σ (γ ) to the
predictions of the spring network model using different distributions P(γc ) of cutoff strains. (b) Normalized root-mean-square error 〈�σ 〉/〈σ 〉
between the simulation data and spring network predictions for the engineering stress plotted as a function of the cooling rate R used to prepare
the metallic glass samples, as well as different forms for P(γc ).

FIG. 9. The optimal values of the parameters of the spring network model obtained from best fits of σs(γ ) to σ (γ ) from the athermal,
quasistatic uniaxial tension simulations of the LJ [(a), (c)] and EAM [(b), (d)] models of Cu50Zr50. Panels (b) and (d) also show optimal values
of the parameters for σ (γ ) obtained from experimental studies of uniaxial tension on Zr65Al10Ni10Cu15 metallic glasses performed at 593 K
[10]. σ (γ ) from these experiments is shown in Fig. 12(a). Panels (a) and (b) and their insets show the variation of P(γc ) and the average 〈γc〉
with the sample preparation protocols and experimental studies. In the main panels (a) and (b), the thermal quenches, disordered FCC samples,
and experimental studies are represented by solid, dotted, and dashed lines, respectively. Panels (c) and (d) show kl0N0/A0 (circles) on the
left vertical axis, and kl0Nn(0)/A0 (diamonds) and kl0(dNn/dγ )/A0 (triangles) on the right vertical axis for the different sample preparation
protocols and experimental studies.
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where γi = iδγ and n = 1/δγ . We find that the normal-
ized root-mean-square error 〈�σ 〉/〈σ 〉 � 0.03 for all of the
simulations of athermal, quasistatic uniaxial tension that we
performed. We also fit the numerical simulations of stress
versus strain to the predictions of the spring network model
using the truncated Gaussian and Weibull distributions for
P(γc). Using these cutoff strain distributions, the spring net-
work model can recapitulate the stress versus strain behavior
of metallic glasses undergoing uniaxial tensile loading with
similar accuracy to that using Gamma distribution for P(γc)
(with 〈�σ 〉/〈σ 〉 � 0.03), as shown in Fig. 8. Thus, one ad-
vantage of the spring network model is that its parameters can
be obtained from a single stress versus strain curve and it can
qualitatively recapitulate the stress versus strain behavior of
metallic glasses undergoing uniaxial tension without sensitiv-
ity to the particular form of the cutoff strain distribution.

The spring network parameters obtained from the fits are
displayed in Fig. 9. In panels (a) and (b), we show how the cut-
off distribution P(γc) and its average 〈γc〉 vary with the sample
preparation protocol for the LJ and EAM models of Cu50Zr50.
The results are similar for the LJ and EAM models. P(γc)
shifts to larger strains and becomes broader as the cooling
rate is decreased. The shift and broadening of the distribution
toward larger strains indicate that the springs can withstand
more elongation before breaking when the sample is prepared
at lower cooling rates. These results are consistent with previ-
ous simulation studies [68] of shear stress versus strain during
athermal, quasistatic simple shear of model metallic glasses.
They showed that the frequency of atomic rearrangements and
energy loss per rearrangement are reduced for slowly cooled
glasses at small strains. For the disordered FCC structures,
P(γc) is shifted to low values of strain, which indicates that
the springs begin to break immediately after the application
of uniaxial tension in these samples.

In Figs. 9(c) and 9(d), we show kl0N0/A0, kl0Nn(0)/A0,
and kl0(dNn/dγ )/A0 for metallic glass samples with different
preparation protocols. For the LJ model, kl0N0/A0 decreases
with increasing cooling rate, whereas kl0N0/A0 is weakly
dependent on cooling rate for the EAM model, with a slight
decrease for the FCC disordered structures. For both LJ and
EAM models of Cu50Zr50, more rapidly cooled glasses pos-
sess larger values of kl0Nn(0)/A and kl0(dNn/dγ )/A. Thus,
more new springs are generated for more rapidly cooled
glasses. However, since the cutoff distribution P(γc) is shifted
to smaller strains for more rapidly cooled glasses, these new
springs break more frequently. LJ disordered FCC structures
possess values of kl0Nn(0)/A0 and kl0(dNn/dγ )/A0 that are
comparable to the most rapidly cooled metallic glasses, which
is consistent with the fact that they have small σm. Instead,
kl0Nn(0)/A0 and kl0(dNn/dγ )/A0 for the EAM disordered
FCC structures are comparable to the values for slowly cooled
glasses.

The predicted stress from the spring network model,
σs(γ ) = σs0(γ ) + σsn(γ ), can be decomposed into contribu-
tions from the initial springs σs0 that were present at γ = 0
and from the new springs σsn that continue forming after the
initial springs break (see Fig. 10). We find that the stress
contribution from the initial springs, which is controlled by
the initial number of springs and the cutoff distribution P(γc),
is strongly protocol dependent. Further, the contribution from

FIG. 10. σs(γ ) from the spring network model [Eq. (11)] can
be decomposed into contributions from the initial springs σs0 (solid
lines) and new springs σsn (dotted lines). We show results from best
fits to the EAM model for Cu50Zr50 samples generated using cooling
rates R = 1010 K/s (blue), 1011 K/s (cyan), 1012 K/s (red), 1013 K/s
(magenta), and 1014 K/s (green), instantaneous quenches (yellow),
and disordered FCC structures (purple).

the initial springs is large at small strains and decays to zero
at large strains. In contrast, σsn is zero at small strains and
σsn � σs0 at large strains. For all thermally quenched samples
and for the disordered FCC structures at sufficiently large
strains, the stress contribution from the new springs σsn ∼ σs

is independent of the sample preparation protocol. This result
implies that the variation of P(γc) with the preparation pro-
tocol [cf. Figs. 9(a) and 9(b)] exactly offsets the variation of
kl0Nn(0)/A0 and kl0(dNn/dγ )/A0 with the preparation proto-
col [cf. Figs. 9(c) and 9(d)].

As described in Sec. II E, we can understand key features of
the engineering stress versus strain curves from the parameters
in the spring network model. As an example, in Fig. 11,
we show the peak stress σm and the strain γm at which it
occurs as determined directly from the five optimal spring
network parameters obtained from fits of σs(γ ) to σ (γ ). As
we found previously in Fig. 6, σm decreases with increasing
cooling rate and the disordered FCC structures possess the
smallest σm. γm increases weakly with increasing cooling rate
and is the largest for the disordered FCC structures. These
results illustrate the high-quality fits of the spring network
model and emphasize that we can in principle determine
the macroscopic stress versus strain relation by determining
the local structural and mechanical properties of metallic
glasses.

In Fig. 12, we compare the predictions of σs(γ ) from the
spring network model to the engineering stress versus strain
from experimental studies of uniaxial tensile deformations of
Zr65Al10Ni10Cu15, Cu49Zr51, and Zr56Ni22Al22 metallic glass
samples [3,6,10]. In Fig. 12(a), we show σ (γ ) obtained from
deforming Zr65Al10Ni10Cu15 samples with cross-sectional
area 0.02 mm2 at strain rate γ̇ = 5×10−4 s−1 and tested at
temperatures T = 593 K, 613 K, and 633 K [10]. These prior
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FIG. 11. (a) Maximum engineering stress σm and (b) the strain γm at which σ (γm ) = σm calculated directly from the spring network
parameters [Eq. (13)] obtained from best fits of the data from the simulations of athermal, quasistatic uniaxial tension of Cu50Zr50 modeled
using the EAM model (red squares). The black circles indicate results directly from σ (γ ) obtained from simulations of athermal, quasistatic
uniaxial tensile deformations.

experimental studies find that σ (γ ) for the Zr65Al10Ni10Cu15

samples possess large-strain tails prior to fracture for T >

513 K (cf. Fig. 6). σs(γ ) from the spring network model
can fit σ (γ ) for Zr65Al10Ni10Cu15 with normalized root-
mean-square error values 〈�σ 〉/〈σ 〉 � 0.04. In Figs. 9(b) and
9(d), we show the optimal parameters for the spring network
model obtained from best fits of σs(γ ) to σ (γ ) from the
Zr65Al10Ni10Cu15 sample strained at T = 593 K. The best-fit
spring network parameters for the experimental results are
of the same order of magnitude as those obtained from best
fits to the athermal, quasistatic uniaxial tension simulations
of Cu50Zr50 modeled using the LJ and EAM models. (Note
that EAM potentials are not publicly available for ZrAlNiCu
and ZrNiAl alloys [69–71].) These results suggest that the
spring network model can be used to describe the mechanical
response of metallic glasses at finite temperatures and strained
at nonzero strain rates.

Figure 12(b) features σ (γ ) obtained from uniaxial tensile
deformation of Cu49Zr51 and Zr56Ni22Al22 metallic glass sam-
ples. The Cu49Zr51 sample has a diameter of 80 nm and is
pulled at strain rate γ̇ ∼ 10−3 s−1 at room temperature [6].
We also considered two sputtered Zr56Ni22Al22 samples that
have thickness ∼90 nm and are also strained at γ̇ ∼ 10−3 s−1

at room temperature [3]. (As-sputtered samples experience
cooling rates in the range 108−1010 K/s [72–74].) One of the
two sputtered samples was annealed at sub-Tg temperatures.
(ZrNiAl alloys have been found to be good glass formers
due to the addition of Al [75,76].) The metallic glass samples
strained at room temperature do not exhibit large-strain tails
in σ (γ ), and instead the samples fracture at small strains
γ ∼ 0.1. As a result, the optimal values for the number and
rate of change of new springs with strain, kl0Nn(0)/A0 and
kl0(dNn/dγ )/A0, are close to zero, and the number of ini-
tial springs and distribution of spring breaking cutoffs P(γc)

FIG. 12. Engineering stress σ vs strain γ from experimental studies of uniaxial tensile deformations applied to several metallic glasses:
(a) Zr65Al10Ni10Cu15 samples tested at 593 K (red circles), 613 K (green diamonds), and 633 K (magenta triangles) [10] and (b) a nm-scale
Cu49Zr51 [6] sample (red circles) and two sputtered Zr56Ni22Al22 [3] samples. The Zr56Ni22Al22 samples were as sputtered (green diamonds)
and annealed below Tg (magenta triangles). The black solid lines are best fits to σs(γ ) [Eq. (12)] from the spring network model.
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mainly determine σ (γ ). Even in this case, the best fits of
σs(γ ) from the spring network model to σ (γ ) from the exper-
iments give normalized root-mean-square error (rms) values
〈�σ 〉/〈σ 〉 � 0.1.

These experimental studies of tensile loading of metallic
glasses were carried out on much larger samples over a range
of finite temperatures, 0.4 � T/Tg � 0.97, compared to the
numerical simulations. The zero-temperature tensile loading
in the simulations and finite-temperature, nonzero strain rate
tensile loading in the experiments explore different sets of
physical conditions, providing independent sets of stress ver-
sus strain curves. The fact that the spring network model can
accurately recapitulate the different stress versus strain curves
in both cases is another important advantage of the spring
network model.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

In this article, we developed a coarse-grained spring net-
work model to describe the mechanical response of metallic
glasses to uniaxial tension. We first performed athermal,
quasistatic uniaxial tension simulations of Cu50Zr50 metal-
lic glasses modeled using both the Lennard-Jones and EAM
potentials. From these simulations, we calculated the engi-
neering stress versus strain σ (γ ) from samples generated over
a wide range of cooling rates and different amounts of local
positional order. In general, σ (γ ) had the same qualitative
form for both the LJ and EAM simulations. We found that
the peak σm in the engineering stress versus strain decreases as
the total potential energy per atom of the undeformed structure
increases, which shows that one can predict key features of
σ (γ ) without actually performing the tensile tests. Further,
we showed that the disordered FCC structures possess more
ductile mechanical response than the rapidly cooled metallic
glass samples. We analytically solved the one-dimensional
spring network model for the total force exerted by the springs
as a function of strain. In the spring network model, initial
springs present at γ = 0 stretch during the applied strain and
break when they exceed cutoff strains γc that are selected from
a Gamma distribution P(γc). However, the predictions of the
spring network model are not extremely sensitive to the form
of this distribution. In addition, new springs can form, and
then stretch and break in the same way as the initial springs.

The engineering stress σs(γ ) predicted from the spring
network model includes five parameters. Two of the pa-
rameters define the shape of the cutoff strain distribution
P(γc). The three other parameters are related to the number
of initial springs, and the number of new springs and rate
of change of the number of new springs with strain. We
showed that we can express these five parameters in terms
of important features of the shape of σ (γ ), i.e., the slope
dσ/dγ at γ = 0, maximum stress σm, strain γm at which the
maximum stress occurs, strain γ f at fracture (i.e. σ = 0 at
large strains), and slope dσ/dγ at γ f . After fitting the spring
network model to σ (γ ) from the simulations, we found that
the cutoff strain distribution shifts to larger strains for more
slowly cooled glasses. In contrast, the number and rate of
change of new springs decreases for slowly cooled glasses.
These two sets of changes offset each other at large strains
since σ (γ ) is nearly independent of the sample preparation

protocol in this regime. Lastly, we showed that the spring
network model can be used to describe the results of exper-
imental studies of uniaxial tensile tests of several Zr-based
metallic glasses at temperatures above and below room tem-
perature, where they possess large-strain tails in σ (γ ) and
where they fracture at small strains, respectively. Thus, the
spring network model displays versatility and generality. It
can accurately describe the ensemble-averaged stress versus
strain curves from numerical simulations of small samples
undergoing athermal, quasistatic tensile loading, as well as the
smooth stress versus strain curves from experimental studies
of tensile loading at elevated temperatures and finite strain
rates.

There are several promising directions for future work.
First, we will focus on extracting the spring model parame-
ters from the atomistic simulations of uniaxial tension. For
example, we can estimate the number of initial springs by
determining the distribution of the sizes of the stress drops
that occur during uniaxial tension of single, finite-sized sam-
ples. To determine the shape of the cutoff strain distribution,
number of new springs, and their rate of change with strain
from the atomistic simulations, we can add a perturbation
to the position of a single atom, minimize the total poten-
tial energy, and measure changes in nearest-neighbor atoms
and the engineering stress as a function of the size of the
perturbation. Thus, using the spring network model, we can
link bulk mechanical properties to atomistic structure and
interactions in metallic glasses. Second, we will generalize
the spring network model so that it can describe the me-
chanical response of metallic glasses under simple and pure
shear deformations, for example, by using several sets of
parallel springs that connect the corners of the simulation box
(see Fig. 13). Third, when a finite number of springs is used, as
shown in Fig. 20(a) in Appendix E with Ns = 256 springs, the
predictions of the spring network model can describe serrated
stress versus strain curves, which occur in small metallic glass
samples, low temperatures, and slow strain rates, and have
been observed in numerous experimental studies [47–49].
Although the distributions of stress drops from the predic-
tions of the spring network model and MD simulations of
Cu50Zr50 are qualitatively similar, i.e., the frequency of stress
drops decreases rapidly with the size of the drop as shown in
Fig. 20(b), the current spring network model generates more
small stress drops and less large ones than the MD simula-
tions. Further studies of the spring network model are required
to quantitatively reproduce the distribution of stress drops
from MD simulations of metallic glasses under uniaxial loads.
Fourth, in the current paper, we focused on systems that do not
form large-scale shear bands. In future work, we will consider
systems prepared using hybrid Monte Carlo and molecular
dynamics methods that can reach cooling rates lower than
106 K/s [25] and increase the aspect ratio of the sample to
obtain strong shear banding behavior as shown in Appendix C.
We will couple springs with different distributions of breaking
strains in parallel and series to model shear banding and frac-
ture behaviors, where cascades of weak springs can break at
the same time and cause large stress drops and large-scale,
collective atomic motion [77] (see Fig. 13). Finally, we will
conduct molecular dynamics simulations of Cu50Zr50 at finite
temperatures to study the mechanical response of metallic
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FIG. 13. Generalizations of the spring network model that can describe (a) simple and (b) pure shear loading geometries; (c) shear-banding
instabilities in the mechanical response; and (d) fracture of metallic glasses. Each spring in (a)–(d) represents a set of parallel springs with no
actual physical separation in the transverse direction to the line connecting the spring endpoints, as depicted in (e). The sets of red, green, and
blue parallel springs in (a) and (b) are uncoupled. The two sets of springs in (c) and (d) follow distinct distributions of breaking strain P(γc ), as
shown in (f). Red springs, which are fewer in number, exhibit a much narrower distribution of γc, such that a significant number of red springs
can break at the same γc, which gives rise to shear banding and fracture behaviors.

glasses to tensile loading at nonzero temperatures and strain
rates, so that we can systematically determine the variation
of the spring network parameters with temperature and strain
rate below Tg.

ACKNOWLEDGMENTS

The authors acknowledge support from NSF Grant No.
CMMI-1901959 (A.N. and C.S.O.). This work was also sup-
ported by the High Performance Computing facilities operated
by Yale’s Center for Research Computing.

APPENDIX A: ATOMIC INTERACTION
POTENTIALS FOR Cu50Zr50

We consider the LJ [24] and EAM interaction potentials
[78] for modeling Cu50Zr50 metallic glasses. The LJ potential
includes isotropic, pairwise atomic interactions with parame-
ters that control the atomic size and the attractive strength of
the interactions.

For the systems with LJ interactions, we employ a trun-
cated and force-shifted potential energy,

Ui j (ri j ) = φ(ri j ) − φ(rc) − (ri j − rc)
dφi j

dri j

∣∣∣∣
ri j=rc

(A1)

for ri j < rc and Ui j (ri j ) = 0 for ri j � rc, where ri j is the
separation between atoms i and j, rc = 2.5σi j , and

φi j (ri j ) = 4εi j[(σi j/ri j )
12 − (σi j/ri j )

6]. (A2)

The total potential energy is the sum of Ui j (ri j ) over distinct
atomic pairs, U = ∑

i> j Ui j (ri j ) and the pair force on atom i

from j is �Fi j = −(dU/dri j )r̂i j , where r̂i j is the unit vector that
points from the center of atom i to the center of j.

We assume that A-type atoms are Zr and B-type atoms
are Cu. We set the the energy and length parameters
in Eq. (A2) as follows: σBB/σAA = 0.7975, σAB/σAA =
(1 + σBB/σAA)/2, εBB/εAA = 0.5584, and εAB/εAA =
(1 + εBB/εAA)/2 − �Hmix/εAA = 0.8167 using experimental

values of the atomic radii [79], cohesive energy [80], and
heat of mixing [81]. The mass ratio is set to mA/mB = 1.435,
which is the ratio of the molar masses of Zr and Cu.

When we describe the LJ simulation results, we con-
vert length and energy scales into physical units using
σAA = 2.9 Å and εAA = 0.74 eV [82]. For these values,
Zr atoms on an HCP lattice yield a cohesive energy of
6.47 eV and lattice constant of 3.22 Å, which match ex-
perimental results [78]. The temperature, pressure, and time
scales are then εAA/kB = 8.6×103 K, εAA/σ 3

AA = 4.7 GPa,
and σAA

√
mAA/εAA = 0.33 ps, where kB is Boltzmann’s con-

stant.
EAM potentials include both pairwise atomic interactions,

as well as many-body interactions that arise from the elec-
tronic degrees of freedom. We considered an EAM interaction
potential to model the mechanical response of Cu50Zr50 to
uniaxial tension. We selected the EAM potential developed
by Mendelev et al., who studied vitrification of CuZr alloys
[78]. For the EAM, the total potential energy is the sum of
two terms [83],

U =
N∑

i=1

Fλ

⎛
⎝∑

j �=i

ρμ(ri j )

⎞
⎠ +

∑
i> j

φ
p
λμ(ri j ), (A3)

where Fλ is the many-body embedding function that depends
on the electron density ρμ, φ

p
λμ is the pairwise interaction

term and λ, μ are the element types of atoms i and j.
Both the many-body and pairwise terms have a cutoff of
rc = 7.6 Å beyond which U = 0. This EAM potential was
calibrated to match the formation energies of the CuZr equi-
librium crystal phases at zero temperature, and the atomic
density, mixing enthalpy, and partial-pair correlation func-
tions at 1000K for Cu46Zr54. In addition, Zhang et al. [25]
used this EAM potential to prepare amorphous Cu50Zr50

samples using a hybrid Monte Carlo (MC) and molecular
dynamics (MD) simulation technique at effective cooling rates
as low as 500 K/s. The structure factor and shear modu-
lus of the slow quenched Cu50Zr50 samples obtained from
the hybrid MC/MD technique were similar to those obtained
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FIG. 14. Engineering stress σ plotted as a function of strain γ for athermal, quasistatic simulations of Cu50Zr50 (modeled using (a) LJ and
(b) EAM interactions) undergoing uniaxial strain for system sizes N = 1024, 3456, 5488, and 8192. The systems with LJ and EAM interactions
were cooled at rates R = 2.6×1014 K/s and 1.0×1014 K/s, respectively. The engineering stress was averaged over 50 configurations for
N = 1024 and 3456 and over 10 configurations for the other system sizes.

experimentally at comparable cooling rates. We also measured
the melting temperature Tm of pure Zr and pure Cu with
this EAM potential using the method described by Tang and
Harrowell [84]. We found Tm ∼ 2110 K for Zr and ∼1356 K
for Cu for this EAM potential, which are similar to the exper-
imental values of Tm ∼ 2128 K and ∼1358 K for Zr and Cu,
respectively.

APPENDIX B: SYSTEM-SIZE EFFECTS ON
ENGINEERING STRESS VERSUS STRAIN

In this Appendix, we investigate the dependence of the
engineering stress versus strain on system size for the ather-
mal, quasistatic simulations of uniaxial strain. In Fig. 14, we
show σ versus γ for Cu50Zr50 metallic glass samples modeled
using (a) LJ and (b) EAM interactions for several system
sizes, N = 1024, 3456, 5488, and 8192. The systems with
LJ and EAM interactions were prepared using cooling rates
R = 2.6×1014 K/s and 1.0×1014 K/s, respectively. For sys-
tems with both LJ and EAM interactions, σ (γ ) for N = 1024
differs significantly from the other system sizes, whereas σ (γ )
for N � 3456 does not depend sensitively on system size. We
observe similar behavior for the system-size dependence of
σ (γ ) in Fig. 14 for the other cooling rates we considered in
the main text. Thus, in the main text we present results for
σ (γ ) for systems with N = 3456 atoms.

APPENDIX C: SHEAR BANDS

Shear bands refer to a type of plastic instability that lo-
calizes large shear strains in a relatively narrow zone of the
system when it is subjected to applied deformations. Shear
bands are typically accompanied by large stress drops in the
material. In the current set of numerical simulations, we pre-
pared the metallic glass samples using relatively fast cooling
rates (R ∼ 1010 − 1014 K/s) and used samples with small

aspect ratios (Lz/Lx = Lz/Ly = 1/2) prior to deformation, and
thus we did not observe large stress drops that indicate large-
scale shear banding. In addition, we also measured the metric
D2

min,i that quantifies the nonaffine atomic motion for each
atom i for two configurations separated by a small strain,

D2
min,i = 1

nd
2

n∑
j=1

‖�ri j,a − F�ri j,0‖2, (C1)

where d is the average atomic diameter of the system, n is the
number of neighbors of atom i within a distance of 3.8 Å (po-
sition of the first minimum of the radial distribution function),
�ri j,0 and �ri j,a are the relative positions between neighboring
atom j and atom i for configurations before and after the
application of a small strain, and F is the best-fit deformation
gradient tensor [85]. For the metallic glass samples generated
via numerical simulations in the main text, we do not find
large spatial correlations among atoms with D2

min,i > 0.04.
Therefore, the numerically generated samples in the main text
do not possess large-scale shear bands. Nevertheless, we also
applied athermal, quasistatic tensile deformations to Cu50Zr50

metallic glasses (using the EAM potential) with larger ini-
tial aspect ratios of Lz/Lx = Lz/Ly = 3 and prepared using
a much lower cooling rate R ∼ 3×106 K/s. These elongated
and lower-energy samples can possess large-scale shear bands
during athermal, quasistatic tensile loading. As demonstrated
in Fig. 15(a), a large stress drop δσ ≈ 1.4 GPa is observed
at strain γ ∼ 0.1, which is the result of a large shear band
that forms in the sample [see Fig. 15(b)]. As discussed above,
the comparisons in the main text between the predictions
of shear stress versus strain for the spring network model
and numerical simulations do not consider large-scale shear
band formation. In future work, we will couple springs with
different distributions of cutoff strains in parallel and series to
model shear-banding and fracture behaviors.
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FIG. 15. (a) Engineering stress vs strain for a Cu50Zr50 sample
(modeled using the EAM potential and prepared using a cooling
rate R ∼ 3×106 K/s) obtained from athermal, quasistatic uniaxial
tension in the z direction. The system contains N = 6000 atoms
within a cuboidal box with initial aspect ratios Lz/Lx = 3 and
Lz/Ly = 3 before deformation and with periodic boundary conditions
in the z direction and open boundaries in the x and y directions.
(b) Nonaffine displacement field (scaled by a factor of 2) obtained
by comparing configurations before and after the largest stress drop
near γ ∼ 0.1 in (a). The vectors are colored based on whether they
have positive (red) or negative (blue) z components of the nonaffine
displacement field. Only atoms with D2

min,i > 0.04 are shown.

APPENDIX D: LOCAL ATOMIC ENVIRONMENT

We can characterize the local degree of positional order
in a given atomic configuration using the sixfold local bond
orientational order (BOO) parameter Q6, which gives the de-
gree of sixfold orientational symmetry of that atom’s nearest
neighbors [86]. Typically, Q6 � 0.25 for a crystal-like atom
and Q6 takes on smaller values for atoms in icosahedral or
other amorphous structural motifs [87,88]. Atoms in FCC and
HCP lattices have Q6 = 0.575 and 0.484, respectively.

The l-fold local BOO parameter of atom i is defined using

qlm(i) = 1

Ni

Ni∑
j=1

Ai j

Ai
tot

Ylm(θ (ri j ), φ(ri j )), (D1)

where Ni is the number of Voronoi neighbors [89] of atom i,
Ai j is the area of the Voronoi face shared by atoms i and j,
Ai

tot is the total area of all faces belonging to the Voronoi poly-
hedron of atom i, Ylm(θ (�ri j ), φ(�ri j )) is the spherical harmonic
function of degree l and order m, θ (�ri j ) and φ(�ri j ) are the
polar and azimuthal angles that parametrize the orientation of
the vector �ri j connecting atoms i and j [90]. We then average
qlm(i) to obtain [91]

Qlm(i) = 1

Ni + 1

⎛
⎝qlm(i) +

Ni∑
j=1

qlm( j)

⎞
⎠. (D2)

FIG. 16. Probability distribution of the local bond-orientational
order parameter P(Q6) for each atom in Cu50Zr50 metallic glasses
prepared by thermally quenching at cooling rates, R = 2.6×1011 K/s
and 1.0×1010 K/s for the LJ and EAM models and in disordered
FCC structures obtained by randomly placing Cu and Zr atoms on an
FCC lattice followed by potential energy minimization.

The l-fold local BOO parameter Ql is then defined by averag-
ing over the m values associated with a given l ,

Ql (i) =
√√√√ 4π

2l + 1

l∑
m=−l

|Qlm(i)|2. (D3)

In Fig. 16, we show the probability distribution of Q6 for
metallic glass samples of Cu50Zr50 prepared using the LJ
model at cooling rate R = 2.6×1011 K/s and using the EAM
model at R = 1.0×1010 K/s, as well as disordered FCC
samples for both the LJ and EAM models. The thermally
quenched LJ and EAM samples possess similar P(Q6); both
are disordered with a peak near Q6 ≈ 0.12. P(Q6) for the
disordered FCC systems with LJ interactions is broader than
those for the thermally quenched samples and the peak is
shifted to Q6 ≈ 0.15. P(Q6) for the disordered FCC systems
with EAM interactions has a peak near Q6 ≈ 0.2, and it
possesses a broad tail that extends beyond Q6 ∼ 0.5. Thus,
the FCC-initialized systems with EAM interactions include a
significant number of crystal-like atoms.

We also characterize the local atomic environment of the
metallic glass samples in the numerical simulations using
Voronoi indices (n3, n4, n5, n6, . . .), where ni is the number
of i-edged faces of a given Voronoi polyhedron. Surfaces with
area less than 1% of the total area of the Voronoi polyhedron
surfaces are excluded [92]. Icosahedral motifs correspond to
polyhedra with Voronoi index (0,0,12,0). Icosahedral motifs
can be isolated or occur within linked clusters by sharing a
vertex, edge, face, or volume with neighboring icosahedra,
as shown in Fig. 17. Linked icosahedra are dominant and
their fraction (relative to the total number of icosahedra in
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FIG. 17. Fraction of isolated and linked icosahedra for Cu50Zr50 metallic glass samples from numerical simulations using the (a) LJ and
(b) EAM models. Fraction of icosahedral pairs that share a vertex, edge, face, or volume for the same data in (a) and (b) for the (c) LJ and
(d) EAM models. (e) Representative atomic configurations illustrating icosahedral pairs that share a vertex, edge, face, or volume. Central
atoms of the icosahedra are colored yellow, and the other atoms are colored blue and red for Cu and Zr atom types, respectively.

samples at each cooling rate) increases with decreasing
cooling rate [Figs. 17(a) and 17(b)], while the fraction
of icosahedral pairs linked by volume sharing (relative to
all linked icosahedra) decreases with decreasing cooling
rate [Figs. 17(c) and 17(d)]. Figure 18 shows the icosahe-

dral network formed by volume-sharing icosahedra together
with icosahedra-like polyhedra (0,2,8,2) that connect to the
neighboring icosahedra via volume sharing. The metallic
glass samples generated via slower cooling rates have more
icosahedra participating in the icosahedral network. The con-

FIG. 18. Snapshots from Cu50Zr50 metallic glass samples from numerical simulations of the EAM potential prepared via cooling rates
(a) R = 1010 and (b) R = 1014 K/s that show the spatial distribution of volume-sharing icosahedra together with volume-sharing (0,2,8,2)
polyhedra. Volume-sharing icosahedra and (0,2,8,2) polyhedra are colored yellow and green, respectively.
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FIG. 19. Fraction (Fico, black circles) and connectivity (Cico, red diamonds) of the icosahedral motifs in Cu50Zr50 samples from numerical
simulations of the (a) LJ and (b) EAM potentials generated via several preparation protocols.

nectivity of the icosahedral network can be characterized
using

Cico = nI

NI
, (D4)

where nI is the number of icosahedral motifs sharing volume
with other icosahedra and NI is the total number of icosahedra
[93]. The fraction of icosahedra in a sample is Fico = nI/N ,
where N is the total number of atoms in the system. Figure 19
shows that the fraction of icosahedral motifs and their connec-
tivity decrease with increasing cooling rate and the disordered
FCC structures possess the smallest fraction of icosahedra
with the weakest degree of connectivity.

APPENDIX E: SERRATED STRESS
VERSUS STRAIN CURVE

In the main text, we calculated the analytical form for σ (γ )
for the spring network model in the Ns → ∞ limit to describe

the ensemble-averaged shear stress versus strain curve from
athermal, quasistatic simulations of metallic glasses under-
going tensile loading. For a single configuration, the stress
versus strain curve is serrated with short elastic segments
punctuated by discontinuous stress drops [24,37,68]. Such
serrated stress versus strain relations have been frequently
observed in experimental studies of metallic glasses deformed
at temperatures below the glass transition temperature and
at low strain rates [47–49]. In Fig. 20(a), we calculate the
shear stress versus strain for uniaxial tensile loading from
the spring network model using a finite number of springs
(Ns = 256). These results demonstrate that the predictions of
the spring network model with a finite number of springs
can describe serrated stress versus strain curves. In addi-
tion, the spring network model can qualitatively reproduce
the distribution of stress drops, as shown in Fig. 20(b),
as well as the ensemble-averaged shear stress versus strain
behavior.

FIG. 20. (a) Engineering stress σ plotted as a function of strain γ for LJ simulations of uniaxial tension of Cu50Zr50 metallic glass samples,
which are obtained using a cooling rate of 2.6×1013 K/s and N = 3456. Magenta, blue, black, and red curves denote σ (γ ) from a single MD
simulation, a single realization of the spring network model, an average over an ensemble of MD simulations, and the spring network model
with Ns → ∞ springs, respectively. (b) Distribution of the stress drops P(δσ ) from the stress vs strain curve obtained from the MD simulations
and spring network model in (a).
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[58] D. Şopu, A. Foroughi, M. Stoica, and J. Eckert, Nano Lett. 16,

4467 (2016).
[59] H. Song, S. Li, and Q. Deng, Comput. Mater. Sci. 139, 106

(2017).
[60] H. Heinz, W. Paul, and K. Binder, Phys. Rev. E 72, 066704

(2005).
[61] R. W. Zwanzig, J. G. Kirkwood, I. Oppenheim, and B. J. Alder,

J. Chem. Phys. 22, 783 (1954).
[62] S. Karmakar, E. Lerner, and I. Procaccia, Phys. Rev. E 82,

055103(R) (2010).

073605-18

https://doi.org/10.1016/j.scriptamat.2005.09.051
https://doi.org/10.1016/j.actamat.2007.01.052
https://doi.org/10.1016/j.actamat.2016.07.050
https://doi.org/10.1038/srep01096
https://doi.org/10.1038/nmat1984
https://doi.org/10.1016/j.actamat.2013.05.001
https://doi.org/10.1016/j.actamat.2014.12.039
https://doi.org/10.1080/09500830902873575
https://doi.org/10.1103/PhysRevLett.108.015504
https://doi.org/10.1016/S1359-6462(97)00105-X
https://doi.org/10.1016/j.scriptamat.2011.06.029
https://doi.org/10.1016/j.scriptamat.2007.02.013
https://doi.org/10.1103/PhysRevLett.94.205501
https://doi.org/10.2320/matertrans.MJ200769
https://doi.org/10.1088/0965-0393/19/8/083001
https://doi.org/10.1073/pnas.1412095111
https://doi.org/10.1063/1.4862403
https://doi.org/10.1103/PhysRevB.90.140203
https://doi.org/10.1103/PhysRevLett.119.195503
https://doi.org/10.1088/2515-7639/ab36ed
https://doi.org/10.1080/14686996.2019.1624140
https://doi.org/10.1103/PhysRevE.101.033001
https://doi.org/10.1103/PhysRevLett.126.015501
https://doi.org/10.1039/D1SM00898F
https://doi.org/10.1073/pnas.2213941119
https://doi.org/10.1103/RevModPhys.90.045006
https://doi.org/10.1016/j.actamat.2009.02.035
https://doi.org/10.1016/j.actamat.2013.02.024
https://doi.org/10.1103/PhysRevLett.89.195506
https://doi.org/10.1103/PhysRevE.84.016115
https://doi.org/10.1039/c2sm07090a
https://doi.org/10.1103/PhysRevResearch.4.043026
https://doi.org/10.1103/PhysRevLett.126.138005
https://doi.org/10.1016/j.actamat.2022.118405
https://doi.org/10.1146/annurev-conmatphys-062910-140452
https://doi.org/10.1103/PhysRevLett.93.195501
https://doi.org/10.1103/PhysRevE.74.016118
https://doi.org/10.1140/epje/i2006-10024-2
https://doi.org/10.5802/crphys.49
https://doi.org/10.1103/PhysRevB.83.184205
https://doi.org/10.1103/PhysRevLett.127.015501
https://doi.org/10.1103/PhysRevE.76.056106
https://doi.org/10.1103/PhysRevE.95.053001
https://doi.org/10.1016/j.msea.2004.02.085
https://doi.org/10.1016/j.actamat.2005.10.054
https://doi.org/10.1016/j.actamat.2007.07.047
https://doi.org/10.1557/jmr.2011.178
https://doi.org/10.1021/acs.nanolett.8b05024
https://doi.org/10.1557/s43578-021-00187-5
https://doi.org/10.1080/00018730300741518
https://doi.org/10.1115/1.2894060
https://doi.org/10.1103/RevModPhys.82.499
https://doi.org/10.1103/PhysRevE.96.063003
https://doi.org/10.1103/PhysRevE.91.050105
https://doi.org/10.1126/science.1163062
https://doi.org/10.1557/jmr.2005.0302
https://doi.org/10.1016/j.scriptamat.2014.08.025
https://doi.org/10.1021/acs.nanolett.6b01636
https://doi.org/10.1016/j.commatsci.2017.07.036
https://doi.org/10.1103/PhysRevE.72.066704
https://doi.org/10.1063/1.1740193
https://doi.org/10.1103/PhysRevE.82.055103


CHARACTERIZING THE MECHANICAL RESPONSE OF … PHYSICAL REVIEW MATERIALS 7, 073605 (2023)

[63] M. Fan, A. Nawano, J. Schroers, M. D. Shattuck, and C. S.
O’Hern, J. Chem. Phys. 151, 144506 (2019).

[64] P. G. Debenedetti and F. H. Stillinger, Nature (London) 410,
259 (2001).

[65] X. Yue, C. Liu, S. Pan, A. Inoue, P. Liaw, and C. Fan, Phys. B:
Condens. Matter 547, 48 (2018).

[66] G. Kumar, P. Neibecker, Y. H. Liu, and J. Schroers,
Nat. Commun. 4, 1536 (2013).

[67] J. Ketkaew, W. Chen, H. Wang, A. Datye, M. Fan, G. Pereira,
U. D. Schwarz, Z. Liu, R. Yamada, W. Dmowski et al.,
Nat. Commun. 9, 3271 (2018).

[68] M. Fan, M. Wang, K. Zhang, Y. Liu, J. Schroers, M. D.
Shattuck, and C. S. O’Hern, Phys. Rev. E 95, 022611 (2017).

[69] C. A. Becker, F. Tavazza, Z. T. Trautt, and R. A. Buarque de
Macedo, Curr. Opin. Solid State Mater. Sci. 17, 277 (2013).

[70] L. M. Hale, Z. T. Trautt, and C. A. Becker, Modell. Simul.
Mater. Sci. Eng. 26, 055003 (2018).

[71] NIST Interatomic Potentials Repository, https://www.ctcms.
nist.gov/potentials, Last accessed on 01-17-2023

[72] N. Liu, T. Ma, C. Liao, G. Liu, R. M. O. Mota, J. Liu, S. Sohn,
S. Kube, S. Zhao, J. P. Singer, and J. Schroers, Sci. Rep. 11,
3903 (2021).

[73] P. Bordeenithikasem, J. Liu, S. A. Kube, Y. Li, T. Ma, B. E.
Scanley, C. C. Broadbridge, J. J. Vlassak, J. P. Singer, and J.
Schroers, Sci. Rep. 7, 7155 (2017).

[74] S. A. Kube, S. Sohn, D. Uhl, A. Datye, A. Mehta, and J.
Schroers, Acta Mater. 166, 677 (2019).

[75] S. Sato, T. Sanada, J. Saida, M. Imafuku, E. Matsubara, and A.
Inoue, Mater. Trans. 46, 2893 (2005).

[76] Y. H. Li, W. Zhang, C. Dong, J. B. Qiang, A. Makino, and A.
Inoue, Intermetallics 18, 1851 (2010).

[77] M. Ozawa, L. Berthier, G. Biroli, A. Rosso, and G. Tarjus,
Proc. Natl. Acad. Sci. USA 115, 6656 (2018).

[78] M. I. Mendelev, Y. Sun, F. Zhang, C. Z. Wang, and K. M. Ho,
J. Chem. Phys. 151, 214502 (2019).

[79] K. J. Laws, D. B. Miracle, and M. Ferry, Nat. Commun. 6, 8123
(2015).

[80] C. Kittel, Introduction to Solid State Physics (John Wiley &
Sons, Hoboken, NJ, 2005).

[81] A. Takeuchi and A. Inoue, Mater. Trans. 46, 2817 (2005).
[82] D. W. Jacobson and G. B. Thompson, Comput. Mater. Sci. 205,

111206 (2022).
[83] M. W. Finnis and J. E. Sinclair, Philos. Mag. A 50, 45 (1984).
[84] C. Tang and P. Harrowell, Nat. Mater. 12, 507 (2013).
[85] M. L. Falk and J. S. Langer, Phys. Rev. E 57, 7192 (1998).
[86] P. J. Steinhardt, D. R. Nelson, and M. Ronchetti, Phys. Rev. B

28, 784 (1983).
[87] M. Leocmach and H. Tanaka, Nat. Commun. 3, 974 (2012).
[88] Y.-C. Hu, K. Zhang, S. A. Kube, J. Schroers, M. D. Shattuck,

and C. S. O’Hern, Phys. Rev. Mater. 4, 105602 (2020).
[89] C. H. Rycroft, Chaos 19, 041111 (2009).
[90] W. Mickel, S. C. Kapfer, G. E. Schröder-Turk, and K. Mecke,

J. Chem. Phys. 138, 044501 (2013).
[91] W. Lechner and C. Dellago, J. Chem. Phys. 129, 114707 (2008).
[92] H. Sheng, W. Luo, F. Alamgir, J. Bai, and E. Ma,

Nature (London) 439, 419 (2006).
[93] M. Lee, C.-M. Lee, K.-R. Lee, E. Ma, and J.-C. Lee, Acta Mater.

59, 159 (2011).

073605-19

https://doi.org/10.1063/1.5116895
https://doi.org/10.1038/35065704
https://doi.org/10.1016/j.physb.2018.07.030
https://doi.org/10.1038/ncomms2546
https://doi.org/10.1038/s41467-018-05682-8
https://doi.org/10.1103/PhysRevE.95.022611
https://doi.org/10.1016/j.cossms.2013.10.001
https://doi.org/10.1088/1361-651X/aabc05
https://www.ctcms.nist.gov/potentials
https://doi.org/10.1038/s41598-021-83384-w
https://doi.org/10.1038/s41598-017-07719-2
https://doi.org/10.1016/j.actamat.2019.01.023
https://doi.org/10.2320/matertrans.46.2893
https://doi.org/10.1016/j.intermet.2010.03.041
https://doi.org/10.1073/pnas.1806156115
https://doi.org/10.1063/1.5131500
https://doi.org/10.1038/ncomms9123
https://doi.org/10.2320/matertrans.46.2817
https://doi.org/10.1016/j.commatsci.2022.111206
https://doi.org/10.1080/01418618408244210
https://doi.org/10.1038/nmat3631
https://doi.org/10.1103/PhysRevE.57.7192
https://doi.org/10.1103/PhysRevB.28.784
https://doi.org/10.1038/ncomms1974
https://doi.org/10.1103/PhysRevMaterials.4.105602
https://doi.org/10.1063/1.3215722
https://doi.org/10.1063/1.4774084
https://doi.org/10.1063/1.2977970
https://doi.org/10.1038/nature04421
https://doi.org/10.1016/j.actamat.2010.09.020

