
PHYSICAL REVIEW MATERIALS 7, 105604 (2023)

General framework for the mechanical response of metallic glasses during
strain-rate-dependent uniaxial compression

Weiwei Jin ,1 Amit Datye ,1 Udo D. Schwarz ,1,2 Mark D. Shattuck ,3 and Corey S. O’Hern 1,4,5,6,*

1Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
2Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, USA

3Benjamin Levich Institute and Physics Department, The City College of New York, New York, New York 10031, USA
4Department of Physics, Yale University, New Haven, Connecticut 06520, USA

5Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA
6Graduate Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA

(Received 23 May 2022; accepted 11 October 2023; published 25 October 2023)

Experimental data on compressive strength σmax versus strain rate ε̇eng for metallic glasses undergoing uniaxial
compression show varying strain rate sensitivity. For some metallic glasses, σmax decreases with increasing ε̇eng,
while for others, σmax increases with increasing ε̇eng, and for certain alloys σmax versus ε̇eng is nonmonotonic.
To understand their strain rate sensitivity, we conduct molecular dynamics simulations of metallic glasses
undergoing uniaxial compression at finite strain rates and coupled to heat baths with a range of temperatures
T0 and damping parameters b. In the T0 → 0 and b → 0 limits, we find that the compressive strength σmax

versus temperature T obeys a “chevron-shaped” scaling relation. In the low-strain-rate regime, σmax decreases
linearly with increasing T , whereas σmax grows as a power law with decreasing T in the high-strain-rate
regime. For T0 > 0, σmax(T ) deviates from the scaling curve at low strain rates, but σmax(T ) rejoins the scaling
curve as the strain rate increases. Enhanced dissipation reduces compression-induced heating, which causes
σmax(T ) to deviate from the b → 0 scaling behavior for intermediate strain rates, but σmax(T ) converges to the
high-strain-rate power-law scaling behavior at sufficiently high strain rates. Determining σmax(T ) as a function
of b and T0 provides a general framework for explaining the strain rate sensitivity of metallic glasses under
compression.
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I. INTRODUCTION

The combination of superior strength and hardness, large
elastic limit, and high fracture toughness make bulk metallic
glasses (BMGs) a promising materials class for numerous
structural applications [1–4]. In contrast to conventional
alloys, BMGs are amorphous (i.e., they lack long-range
crystalline order), and their response to deformation is
not governed by the generation and motion of topological
defects. Instead, researchers have shown that shear trans-
formation zones (STZs), where atoms undergo collective,
nonaffine motion, control the mechanical response of metallic
glasses. Numerous studies have probed the unique mechanical
response of metallic glasses subjected to quasistatic defor-
mations at low temperatures. However, understanding the
dynamic mechanical response of metallic glasses at finite
strain rates and temperatures near the glass transition temper-
ature is important for many engineering applications.

Uniaxial compression of bulk metallic glass pillars is a
common mechanical test that probes their nanoscale and mi-
croscale mechanical response. Studies have shown that the
strength of BMGs under compression decreases with increas-
ing temperature [5–7], since higher temperatures enhance
the activation of shear transformation zones and formation
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of shear bands [8]. However, there is no consensus about
the behavior of the compressive strength as a function of
strain rate for BMGs [5,9–19], where the compressive strength
σmax is defined as the maximum engineering stress prior to
steady flow. For example, as shown in Fig. 1, the compres-
sive strength of millimeter-sized Ti- and Zr-based BMGs
(such as Ti45Zr16Ni9Cu10Be20 [9], Ti40Zr25Ni8Cu9Be18 [10],
and Zr53Cu30Ni9Al8 [11]), and Ni62Nb38 [12], increases
with strain rate (i.e., positive strain rate sensitivity of
σmax). In contrast, the compressive strength of similar Ti-
and Zr-based BMGs (e.g., Ti32.8Zr30.2Cu9Ni5.3Be22.7 [14],
Zr38Ti17Cu10.5Co12Be22.5 [15], Zr50.7Cu28Ni9Al12.3 [16], and
Zr52.5Cu17.9Ni14.6Al10Ti5 [17]) and Pd40Ni40P20 [13] de-
creases with strain rate (negative strain rate sensitivity). In
addition, recent studies have shown that the compressive
strength for Zr59.3Cu28.8Nb1.5Al10.4 is nonmonotonic with
strain rate; the strength first decreases and then increases with
increasing strain rate [19]. Does the fact that different BMGs
possess different strain-rate-dependent compressive strengths
mean that the mechanical response of these materials de-
pends sensitively on each particular alloy and composition?
We seek to identify the dominant mechanism that controls
the strain-rate-dependent compressive strength so that we can
potentially describe the mechanical response of all BMGs to
uniaxial compression.

In this paper, we perform molecular dynamics (MD) sim-
ulations of metallic glasses undergoing uniaxial compression
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FIG. 1. Compressive strength σmax (normalized by the value σ0 at
the lowest strain rate) plotted as a function of engineering strain rate
ε̇eng (in s−1) from experimental studies of 12 bulk metallic glasses
undergoing uniaxial compression at room temperature [5,9–19].

using the embedded atom method (EAM) and Lennard-Jones
(LJ) interatomic potentials to understand their mechanical
response. Specifically, we focus on EAM simulations of
Ni62Nb38, as well as Zr60Cu29Al11, and LJ models of Ni62Nb38

metallic glasses. We consider the simulation models as small
subsystems embedded within a large bulk system. To account
for the flow of heat from the subsystem to the bulk system
(or heat bath) during compression, we incorporate a damping
term proportional to the atomic velocities into the equations of
motion. By varying the heat bath temperature T0 and damping
coefficient b, we can effectively control the local temperature
of the subsystem and the rate of heat transfer to the bulk sys-
tem, respectively, during the applied compression. In addition,
we focus on the preyield strain regime, where the forma-
tion and propagation of shear transformation zones are the
dominant deformation mechanisms. We do not consider the
formation of large-scale shear bands, which induces failure of
the material.

In general, we show that the local temperature and strength
of the local dissipation control the behavior of the compressive
strength versus strain rate in metallic glasses. For systems
coupled to a zero-temperature heat bath in the limit of low
damping coefficient, the compressive strength σmax versus
temperature T obeys a chevron-shaped scaling curve with two
main branches. In the lower branch of the chevron-shaped
curve, σmax decreases linearly with increasing T , whereas it
displays a power-law increase with decreasing T in the upper
branch. Higher strain rates in the lower branch contribute to
more effective local heating of the system, leading to thermal
softening and negative strain rate sensitivity of the compres-
sive strength. In contrast, in the power-law upper branch,
the increased potential energy from compression cannot be
effectively converted into kinetic energy, which results in
positive strain rate sensitivity of σmax. For systems coupled
to a nonzero-temperature heat bath (T0 > 0), σmax(T ) devi-
ates from the scaling curve at low strain rates, but σmax(T )
rejoins the scaling curve as the strain rate increases. For all
heat bath temperatures, large damping reduces compression-
induced thermal fluctuations, which causes σmax(T ) to deviate

from, but still be bounded by, the scaling curve in the b → 0
limit.

While these computational studies have focused on two
specific metallic glasses (Ni62Nb38 and Zr60Cu29Al11), our
results are qualitatively the same for both EAM and LJ in-
teraction potentials and both metallic glasses. We further
demonstrate that the experimental results of the compres-
sive strength σmax versus the engineering strain rate ε̇eng, as
depicted in Fig. 1 for 12 different metallic glasses, can be
mapped onto the same chevron-shaped scaling curves σmax(T )
obtained from the MD simulations. Thus the chevron-shaped
scaling curves in the σmax-versus-T plane provide a general
framework for understanding the strain rate sensitivity of
metallic glasses.

The remainder of this paper is organized as follows. In
Sec. II, we describe the cooling protocol for preparing the un-
strained metallic glass samples and the uniaxial compression
protocol for determining the strain-rate-dependent compres-
sive strength of these samples. In Sec. III A, we present
the results from MD simulations of Ni62Nb38 (modeled us-
ing an EAM potential) undergoing uniaxial compression and
coupled to a zero-temperature heat bath, e.g., the variation
of the temperature-dependent compressive strength σmax(T )
with damping coefficient and cooling rate used to prepare
the samples. In Sec. III B, we also show results for MD
simulations of Ni62Nb38 (modeled using an EAM potential)
undergoing uniaxial compression, but now the simulations
are coupled to a finite-temperature heat bath T0 > 0. We
quantify how σmax(T ) changes as T0 increases toward the
glass transition temperature. In Sec. III C, we describe the
methods to compare σmax(T ) between the experimental and
computational studies and different metallic glasses. We de-
scribe the deformation mechanism governing the mechanical
response of metallic glasses in Sec. III D. The conclusions
and promising future directions are provided in Sec. IV. We
also include five Appendixes to present additional details of
the MD simulations. Descriptions of the EAM and LJ atomic
interactions are provided in Appendix A. In Appendix B, we
show supplemental results for σmax(ε̇eng) and T (ε̇eng) from
MD simulations of Ni62Nb38 undergoing uniaxial compres-
sion with nonzero-temperature heat baths. The MD simulation
results for uniaxial compression of Zr60Cu29Al11 modeled
using an EAM interatomic potential and Ni62Nb38 using the
LJ interatomic potential are compared with Ni62Nb38 using an
EAM interatomic potential in Appendixes C and D. Finally,
the fitting parameters for determining T (ε̇eng) and mapping
the experimental results for σmax(ε̇eng) onto the simulation
results for σmax(T ) are provided in Appendix E.

II. METHODS

In this section, we describe the computational meth-
ods to simulate uniaxial compression of metallic glasses at
finite strain rates and temperatures. We conduct MD simu-
lations of two particular BMGs, Ni62Nb38 and Zr60Cu29Al11

[20]. The experimental measurements of the compressive
strength for Ni62Nb38 and Zr59.3Cu28.8Nb1.5Al10.4 (similar
to Zr60Cu29Al11) are shown in Fig. 1. We consider EAM
interatomic potentials for Ni62Nb38 [21] and Zr60Cu29Al11
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[22] and a pairwise Lennard-Jones potential for Ni62Nb38. See
Appendix A for the details of the interatomic potentials.

A. Metallic glass sample preparation

Each metallic glass sample contains N = 6000 atoms in
a 2 × 2 × 3 cuboidal box with periodic boundary conditions
in the x, y, and z directions. The samples modeled using the
EAM potentials are generated by cooling equilibrium liquid
states at T = 2000 K (above the glass transition temperatures
Tg ∼ 1000 K for Ni62Nb38 and Tg ∼ 850 K for Zr60Cu29Al11)
to a target temperature 0 < T0 � 120 K using a range of
cooling rates from R = 1010 K/s to R = 1013 K/s. The tem-
perature of the system is calculated using T = 2K/(3NkB),
where K is the total kinetic energy and kB is the Boltzmann
constant. After quenching the system to T0 < Tg, we change
the periodic boundary conditions in the x and y directions
to open boundary conditions, such that the pressure in the
transverse direction is effectively zero, mimicking the exper-
imental compression of micropillars. The periodic boundary
conditions in the z direction (i.e., the direction in which the
compression is later applied) are maintained to minimize the
effects of a physical boundary in small systems. The system is
relaxed using the Nosé-Hoover thermostat and barostat (using
the velocities and system size in the z direction as the degrees
of freedom) to achieve zero pressure at temperature T0.

The Ni62Nb38 metallic glass samples modeled with the LJ
interatomic potential are generated using a similar geometry
and protocol to those used for the metallic glass samples
modeled using the EAM potentials. Using periodic boundary
conditions in the x, y, and z directions, we cool equilibrium
liquid states at T = 2 × 104 K to low temperature, T0 =
20 K, over a range of cooling rates from R = 1012 K/s to
R = 1014 K/s. We then open the boundaries in the x and y
directions and bring the system to zero pressure at tempera-
ture T0 using the Nosé-Hoover thermostat and barostat. For
the LJ interaction potential, we use σNbNb = 3 × 10−10 m,
σNbNb

√
mNb/εNbNb = 5.4 × 10−13 s, εNbNb/σ

2
NbNb = 1.7 GPa,

and εNbNb/kB = 3400 K as the length, time, stress, and tem-
perature scales, respectively.

B. Uniaxial compression protocol

We subject the metallic glass samples to uniaxial com-
pression at nonzero strain rates ε̇eng in the z direction. The
engineering strain and stress are defined as

εeng = (Lz0 − Lz )/Lz0, (1)

σeng = Fz/A0, (2)

where Lz0 is the initial sample length in the z direction, A0

is the initial cross-sectional area in the x-y plane, and Fz is
the total force in the z direction that opposes the compressive
strain. The strain is applied affinely to the system, such that
after each compressive strain increment, �εeng = ε̇eng�t , the
new z position of each atom i is z′

i = zi(1 − �εeng), where �t
is the time step. The compressive strength σmax is defined as
the maximum in σeng(εeng) prior to steady flow.

We conduct MD simulations on metallic glass samples
containing N = 6000 atoms, which are much smaller than the
micrometer-sized experimental samples in Fig. 1. We consider
the simulation as a small subsystem coupled to the rest of
the bulk sample, which represents a heat bath (at tempera-
ture T0) that can inject and remove heat from the subsystem.
It is straightforward to show that after integrating over the
degrees of freedom for the heat bath in the coupled system,
the equations of motion for the atomic degrees of freedom
in the subsystem include a noise term and a damping term
proportional to the atomic velocities. The damping term rep-
resents the flow of heat from the subsystem to the heat bath,
and the noise term represents heat flow from the heat bath to
the subsystem.

We implement a Langevin thermostat [23] to model the
heat bath at temperature T0. In this case, the force acting on
atom i with mass mi is

Fi = Fc
i + Fd

i + Fn
i = miai, (3)

where ai is the acceleration of atom i, Fc
i = −∂U/∂ri is the

conservative force arising from the total potential energy U ,
Fd

i = −bvi is the damping force proportional to the velocity vi

of atom i, and Fn
i is the noise term that is directed in a random

direction and has a magnitude proportional to
√

kBT0b/�t .
For a zero-temperature heat bath, Fn

i = 0. We vary the damp-
ing coefficient b to tune the time scale of the heat flow from
the subsystem to the heat bath. The integration scheme for
Eq. (3) is a modified velocity-Verlet algorithm with time step
�t = 0.002 ps [24].

In addition to computational studies of uniaxial com-
pression carried out at finite strain rates, we also subjected
the metallic glass samples to athermal, quasistatic uniaxial
compression [25]. For this method, we applied successive
compressive strain increments �εeng = 2 × 10−5 with each
increment followed by potential energy minimization using
the conjugate gradient algorithm.

III. RESULTS

In this section, we describe the results for the MD simula-
tions of Ni62Nb38 metallic glass samples undergoing uniaxial
compression. In Sec. III A, we show the results for the
compressive strength of metallic glass samples undergoing
uniaxial compression and coupled to a zero-temperature heat
bath. In particular, we illustrate the chevron-shaped scaling
behavior of σmax(T ) in the low-damping-coefficient limit and
how it is modified with increasing b. In Sec. III B, we deter-
mine how σmax(T ) changes with increases in the heat bath
temperature T0. We describe the methods to map the MD
simulation results for σmax(T ) at nonzero heat bath temper-
atures onto those at T0 = 0 and for mapping the experimental
data for σmax(ε̇eng) onto σmax(T ) from the MD simulations
in Sec. III C. Finally, we introduce a general framework for
understanding the strain rate sensitivity of σmax in metal-
lic glasses in Sec. III D. Additional simulation results for
Ni62Nb38 and Zr60Cu29Al11 undergoing uniaxial compression
at zero and nonzero temperature heat baths are provided in
Appendixes B, C, and D.
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FIG. 2. (a) Engineering stress σeng vs strain εeng from EAM simu-
lations of uniaxial compression of a Ni62Nb38 sample obtained using
cooling rate R = 1012 K/s. The black curve corresponds to ather-
mal, quasistatic compression, and the horizontally shifted curves,
from left to right, correspond to compression coupled to a zero-
temperature heat bath with damping coefficient b = 10−4 eV ps Å−2

at strain rates ε̇eng = 107 (red), 108 (blue), 109 (green), 2 × 109 (ma-
genta), 5 × 109 (orange), and 1010 (cyan) s−1, respectively. The inset
shows the same data for σeng vs εeng in the main panel for athermal,
quasistatic compression and ε̇eng = 107 and 108 s−1 without horizon-
tally shifting the data. (b) Average temperature T vs strain εeng from
EAM simulations of 20 Ni62Nb38 samples prepared using R = 1012

K/s for each strain rate. The damping coefficient and strain rate color
codes are the same as those in (a).

A. Zero-temperature heat bath

We first present the results of the MD simulations of uni-
axial compression (coupled to a zero-temperature heat bath)
of Ni62Nb38 metallic glass samples modeled using an EAM
potential. In Fig. 2(a), we show the stress-versus-strain rela-
tion for samples compressed at several strain rates and fixed
damping coefficient, b = 10−4 eV ps Å−2. At low strain rates,
the stress-strain curves possess quasilinear elastic segments,
punctuated by discontinuous drops in the stress. In particular,
the stress-strain curves for ε̇eng � 108 s−1 agree with those
obtained using athermal, quasistatic compression as shown
in the inset in Fig. 2(a). Serrations in the stress-strain rela-
tions have also been found in experimental studies of uniaxial
compression and nanoindentation of BMGs at low strain rates
[19,26]. The stress-strain curves become more continuous,
and the maximum stress is nonmonotonic with increasing
strain rate. For ε̇eng = 108 s−1, the maximum stress value de-

creases below that achieved in the low-strain-rate limit. As the
strain rate increases further, i.e., for ε̇eng � 5 × 109 s−1, the
maximum stress is larger than that in the low-strain-rate limit.
In Fig. 2(b), we show the variation of the internal temperature
T as a function of strain εeng at fixed damping coefficient
and different strain rates. For a given damping coefficient and
strain rate, the temperature of the system will increase from its
initial value (in this case, T0 = 0) and then reach a steady-state
value Tf after a given total compressive strain ε f . The steady-
state Tf is determined by balancing the compression-induced
heating (from the applied strain rate) and heat removal (to the
heat bath) arising from damping. Both Tf and ε f increase with
increasing strain rate but decrease with increasing damping
coefficient. For ε̇eng � 2 × 109 s−1, we do not show the strain
regime where T → Tf in Fig. 2(b).

The stress-strain relations for metallic glasses depend on
the damping coefficient and strain rate, as well as the cooling
rate used to prepare the sample. The results for the com-
pressive strength as a function of the strain rate for EAM
simulations of Ni62Nb38 prepared using different cooling rates
and compressed in contact with a zero-temperature heat bath
at different damping coefficients are shown in Fig. 3(a). We
find that the compressive strength σmax has a self-similar form
for different cooling rates, where the compressive strength
increases with decreasing cooling rate. This behavior can be
attributed to the dependence of the mechanical properties of
glasses on the depth of potential energy minima that they
sample. Lower cooling rates allow the system to explore and
sample deeper energy minima, leading to enhanced mechan-
ical properties, including higher compressive strength. We
therefore plot the cooling-rate-scaled and averaged compres-
sive strength

σ ∗
max = 〈σmax(R/Rc)γ 〉R, (4)

where γ ≈ 0.038 and Rc = 1 K/s is a reference cooling rate,
versus strain rate in Fig. 3(b) to remove the cooling rate depen-
dence. 〈·〉R indicates the average of σmax(R/Rc)γ over the four
cooling rates, R = 1010, 1011, 1012, and 1013 K/s. (Changing
Rc will only modify σ ∗

max by a constant multiplicative factor.)
The exponent γ is obtained by finding the best collapse for
σ ∗

max over the full range of cooling rates. We find several
important features for σ ∗

max(ε̇eng). First, in the low-strain-rate
limit (for the nonzero damping coefficients considered), σ ∗

max
approaches the value obtained for athermal quasistatic com-
pression. Second, the scaled compressive strength increases
monotonically with strain rate when the damping coefficient
b = 0, whereas σ ∗

max is nonmonotonic in ε̇eng when b > 0
[19], i.e., the scaled compressive strength first decreases with
increasing strain rate and then increases rapidly for ε̇eng �
109 s−1. The magnitude of the nonmonotonic behavior [i.e.,
the difference between the value of σ ∗

max at ε̇eng → 0 and
the minimal value of σ ∗

max(ε̇eng)] across the strain rate range
increases with decreasing b.

To understand the nonmonotonic behavior of σ ∗
max versus

ε̇eng, we characterize the local temperature of the system
during compression. We show the temperature averaged over
strains in the range 0 < εeng < εb versus the strain rate for
samples prepared using several cooling rates, R = 1010, 1011,
1012, and 1013 K/s in Fig. 4(a). (For εb ∼ 0.084, σ ∗

max occurs
in this strain interval for all systems considered.) As we found
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FIG. 3. (a) Compressive strength σmax plotted as a function of
strain rate ε̇eng for Ni62Nb38 samples (modeled using an EAM poten-
tial) undergoing uniaxial compression with a zero-temperature heat
bath. Samples were generated using a range of cooling rates, R =
1010 (fully filled symbols), 1011 (top-filled), 1012 (right-filled), and
1013 (bottom-filled) K/s, and five damping coefficients b. (b) Com-
pressive strength σ ∗

max (scaled by the cooling rate used to prepare the
samples) in Eq. (4) plotted vs strain rate ε̇eng for Ni62Nb38 (averaged
over 80 samples) at several damping coefficients b. The data for
athermal quasistatic compression are shown as pentagons.

for the compressive strength, the temperature versus strain
rate has a self-similar form for different cooling rates used
to prepare the samples. Thus we can effectively remove the
cooling-rate dependence by scaling T − T0. In Fig. 4(b), we
plot the cooling-rate-scaled and averaged temperature,

T ∗ = 〈(T − T0)(R/Rc)−λ〉R, (5)

where λ ≈ 0.057 and Rc = 1 K/s is a reference cooling rate.
Changing Rc will only change T ∗ by a constant multiplicative
factor. The strain rate dependence of the cooling-rate-scaled
and averaged temperature can be captured by the expression

T ∗(ε̇) = c(ε̇/k)α

1 + (ε̇/k)β
, (6)

where the coefficients k and c have units of s−1 and K, re-
spectively, and the power-law exponents α and β depend on
b. The values of k, c, α, and β are provided in Table I of
Appendix E. For systems with b = 0, in which compression-
induced energy increases are not dissipated, the exponent α

is equal to zero and β > 0, indicating that the cooling-rate-

FIG. 4. (a) Average temperature T (over the strain interval 0 <

εeng < εb) plotted vs ε̇eng for the systems in Fig. 3(a). The symbol
style is the same as in Fig. 3(a). Similar T (ε̇eng) curves are obtained
for samples prepared over a wide range of cooling rates. (b) Cooling-
rate-scaled and averaged temperature T ∗ in Eq. (5) vs ε̇eng. Best fits
of T ∗(ε̇eng) to Eq. (6) for different b values are shown as dash-dotted
lines.

scaled and averaged temperature T ∗ decreases monotonically
with increasing strain rate. This monotonic decrease occurs
because the averaging strain interval is fixed, and as the strain
rate increases, the system has less time to heat up during
compression. For systems with b > 0, in which heat flows
from the subsystem to the surrounding bulk system, the ex-
ponents α and β satisfy β > α and α > 0. This form for T ∗
suggests that the temperature-versus-strain-rate curves exhibit
a maximum, indicating that beyond a dimensionless strain rate
mε̇eng/b 
 1, where m is the average mass per atom, the strain
rate is so fast that sufficient time has not elapsed to allow the
additional potential energy resulting from compression to be
efficiently converted into kinetic energy. At low strain rates,
the damping can effectively remove heat from the system
during compression, and thus the temperature at low strain
rates decreases with increasing damping coefficient. As the
strain rate is increased, damping is less effective at removing
heat, and the temperature increases with strain rate. We find
that the position ε̇p of the peak in T ∗(ε̇eng) scales linearly with
b, while the peak value of T ∗ scales as ε̇−μ

p , with μ ∼ 0.2.
The results in Figs. 3 and 4 suggest that the nonmonotonic

behavior of σmax versus ε̇eng is caused by the nonmonotonic
dependence of temperature on strain rate. Therefore we plot
the cooling-rate-scaled and averaged compressive strength
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TABLE I. Parameters for fits of T ∗(ε̇eng) from MD simula-
tions of uniaxial compression of Ni62Nb38 [Figs. 4(b) and 12] and
Zr60Cu29Al11 [Fig. 14(b)] to Eq. (6) for varying heat bath tempera-
tures T0 and damping coefficients b (eV ps Å−2).

Figure b k c α β

Fig. 4(b)
T0 = 0 K
Ni62Nb38

0 2.26 × 1010 4.27 0 0.564
10−5 1.09 × 108 6.12 0.767 0.956
10−4 5.28 × 108 4.77 0.947 1.16

3 × 10−4 1.27 × 109 3.80 0.988 1.19
10−3 2.90 × 109 3.07 1.00 1.17

Fig. 12(a)
T0 = 2 K
Ni62Nb38

0 2.35 × 1010 4.31 0 0.518
6 × 10−5 3.02 × 108 5.02 0.922 1.11
2 × 10−4 1.29 × 109 4.61 0.851 1.12

Fig. 12(b)
T0 = 10 K
Ni62Nb38

0 2.04 × 1010 4.36 0 0.494
7 × 10−6 6.44 × 107 5.95 0.750 0.916
6 × 10−5 2.86 × 108 4.87 0.944 1.13

Fig. 12(c)
T0 = 40 K
Ni62Nb38

0 8.45 × 109 4.61 0 0.378
6 × 10−5 2.71 × 108 4.52 0.977 1.17
5 × 10−4 1.06 × 109 2.90 1.10 1.24

Fig. 12(d)
T0 = 120 K
Ni62Nb38

0 4.15 × 108 5.88 0 0.292
7 × 10−6 3.98 × 107 4.88 0.886 1.08
6 × 10−5 2.33 × 108 3.81 0.979 1.21

Fig. 14(b)
T0 = 0 K
Zr60Cu29Al11

0 1.54 × 1010 22.2 0 0.516
10−5 1.06 × 108 30.7 0.828 1.03
10−4 4.61 × 108 22.8 1.02 1.23
10−3 1.95 × 109 12.5 1.17 1.27

σ ∗
max versus the scaled and averaged temperature T ∗ for EAM

simulations of Ni62Nb38 undergoing uniaxial compression
with coupling to a zero-temperature heat bath in Fig. 5. In
the limit of low damping coefficient (b → 0), σ ∗

max versus
T ∗ follows a chevron-shaped scaling curve, which consists
of two main branches. In the lower branch, which corre-

FIG. 5. Cooling-rate-scaled and averaged compressive strength
σ ∗

max plotted as a function of the cooling-rate-scaled and averaged
temperature T ∗ for Ni62Nb38 samples [using data from Figs. 3(b) and
4(b)] undergoing uniaxial compression with coupling to a zero-
temperature heat bath at several damping coefficients b. The arrows
indicate the directions of the increasing strain rate. The magenta
dash-dotted lines give the chevron-shaped scaling behavior in the
b → 0 limit.

sponds to the low-strain-rate regime, σ ∗
max decreases linearly

with increasing T ∗, following σ ∗
max = σ1 − κT ∗, where σ1

is the scaled compressive strength in the T ∗ → 0 limit and
κ ≈ 0.18 GPa/K. When the cooling-rate-scaled and averaged
temperature reaches T ∗ ≈ 4 K, further increases in strain rate
cause the scaled temperature to decrease, and σ ∗

max increases
as a power law with decreasing temperature, σ ∗

max ∼ (T ∗)−ν ,
with ν ≈ 4.6. For systems with nonzero damping coefficients,
σ ∗

max(T ∗) deviates from the chevron-shaped scaling behavior
at a T ∗ that depends on b. In particular, in the limit of high
damping coefficient, initial increases in strain rate cause only
relatively small temperature increases, and the compressive
strength does not decrease significantly. With further increases
in strain rate, the temperature starts to decrease, and the com-
pressive strength increases rapidly, eventually approaching
the σ ∗

max ∼ (T ∗)−ν power-law scaling relation. These results
emphasize the effects of strain rate and damping coefficient in
determining the local temperature, which in turn controls the
compressive strength in metallic glasses undergoing uniaxial
compression with coupling to a zero-temperature heat bath.

B. Finite-temperature heat bath

In this section, we present results for EAM simulations
of Ni62Nb38 metallic glasses subjected to uniaxial compres-
sion, but coupled to a heat bath at nonzero temperatures (i.e.,
T0 = 2, 10, 40, and 120 K). As shown in Sec. III A, the com-
pressive strength of metallic glasses prepared using different
cooling rates is self-similar, and thus we show results for
the cooling-rate-scaled compressive strength and temperature.
(However, we only include the results for σ ∗

max and T ∗ at
T0 > 0 for samples prepared using a single cooling rate of
1010 K/s.) As shown in Fig. 6(a), σ ∗

max versus T ∗ for systems
compressed using a low-temperature heat bath (i.e., T0 = 2
and 10 K) is similar to that for systems compressed using
a zero-temperature heat bath. In particular, σ ∗

max decreases
linearly with increasing T ∗ in the lower branch of the chevron-
shaped curve and grows as a power law with decreasing T ∗ in
the upper branch of the chevron-shaped curve. However, for
heat baths with T0 � 40 K, the σ ∗

max-versus-T ∗ curves shift to
smaller values of σ ∗

max and T ∗, and σ ∗
max increases (rather than

decreases) with increasing T ∗ at the beginning of the lower
branch of the chevron-shaped curve.

For systems coupled to a heat bath at higher temperatures,
as shown in Fig. 6(b), the nonmonotonic behavior of σ ∗

max
versus ε̇eng can be recovered at sufficiently small damping co-
efficients (and certain strain rates), where σ ∗

max first increases
with increasing T ∗ at low strain rates, then decreases with
increasing T ∗ at intermediate strain rates, and finally increases
as a power law with decreasing T ∗ at the highest strain rates.
We find similar results for σ ∗

max versus T ∗ for heat bath tem-
peratures T0 = 2, 10, and 40 K. (See Appendix B.) The fact
that we obtain the nonmonotonic behavior for σ ∗

max versus ε̇eng

over such a wide range of heat bath temperatures emphasizes
the generality of these results.

C. Comparing compressive strength versus temperature
in simulations and experiments

As shown in Sec. III B, Ni62Nb38 metallic glass samples
(modeled with EAM atomic interactions) undergoing uniaxial
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FIG. 6. (a) Cooling-rate-scaled compressive strength σ ∗
max plot-

ted vs the cooling-rate-scaled temperature T ∗ from MD simulations
of uniaxial compression of Ni62Nb38 (modeled using EAM atomic
interactions) with coupling to a heat bath at T0 = 0, 2, 10, 40, and
120 K. The damping coefficient b is 6 × 10−5 eV ps Å−2 for all sim-
ulations. (b) σ ∗

max plotted vs T ∗ for the same simulations in (a) with
heat bath T0 = 120 K and several damping coefficients b. The solid
arrows in (a) and (b) indicate the directions of increasing strain rate.

compression and coupled to a finite-temperature heat bath
obey σ ∗

max-versus-T ∗ relations similar to those of samples
coupled to a zero-temperature heat bath. Thus we seek to map
the results for σ ∗

max versus T ∗ for systems with a nonzero-
temperature heat bath onto σ ∗

max versus T ∗ for systems with a
zero-temperature heat bath by applying linear transformations
to σ ∗

max and T ∗ for the systems at T0 > 0. In particular, we set

σ †
max = kσ,sσ

∗
max + cσ,s,

T † = kT,sT
∗ + cT,s, (7)

where the coefficients kσ,s, cσ,s, kT,s, and cT,s (listed in Table II
of Appendix E) are selected so that the region with negative
strain rate sensitivity and the upper power-law branch of σ †

max
versus T † for systems at T0 > 0 with low damping coefficients
match the lower and upper branches of the chevron-shaped
scaling curves of σ ∗

max versus T ∗ at T0 = 0. The T0-dependent
coefficients obtained from this procedure at low b are used
to scale σ ∗

max and T ∗ at the same T0 and higher damping
coefficients. (This set of linear transformations is referred to
as method I.) The scaled simulation data for zero and nonzero

TABLE II. Parameters for the linear transformation in Eq. (7)
that map the results for the EAM simulations of Ni62Nb38 undergoing
uniaxial compression and coupled to a finite-temperature heat bath to
those coupled to a zero-temperature heat bath, as shown in Fig. 7.

Heat bath kσ,s cσ,s kT,s cT,s

T0 = 2 K 1.05 −0.551 0.902 0.198
T0 = 10 K 1.06 −0.485 0.782 0.430
T0 = 40 K 0.970 0.671 0.979 0.242
T0 = 120 K 0.784 3.68 0.538 1.35

heat bath temperatures are shown in Fig. 7. At T0 = 0, the
chevron-shaped scaling curve σ †

max(T †) is characterized by a
lower branch that decreases linearly with the scaled temper-
ature and an upper branch that grows as a power law with
decreasing temperature. In contrast, for T0 > 0, σ †

max initially
increases with T † at the lowest strain rates, and then at higher
strain rates the compressive strength versus temperature obeys
the same scaling behavior as that observed for T0 = 0 and
varying damping coefficients.

As discussed in Appendixes C and D, we also performed
MD simulations of uniaxial compression of Zr60Cu29Al11

(modeled with an EAM atomic interaction) and Ni62Nb38

(modeled with Lennard-Jones interactions) coupled to a zero-
temperature heat bath and find qualitatively the same behavior
for the compressive strength versus temperature as found for
the Ni62Nb38 metallic glass samples modeled using EAM
atomic interactions. Again, σ †

max decreases linearly with in-
creasing T † in the low-strain-rate branch and grows as a

FIG. 7. Scaled compressive strength σ †
max plotted vs the scaled

temperature T † [Eq. (7)] for all MD simulations of Ni62Nb38 metal-
lic glasses (modeled using EAM interactions) undergoing uniaxial
compression and coupled to a heat bath with T0 = 0, 2, 10, 40,
and 120 K. Black fully filled, blue top-filled, green right-filled,
red bottom-filled, and purple left-filled symbols correspond to the
heat bath with T0 = 0, 2, 10, 40, and 120 K, respectively. Squares,
circles, upward triangles, diamonds, and downward triangles corre-
spond to increasing damping coefficients from 0 to 10−3 eV ps Å−2.
The magenta dash-dotted lines indicate the chevron-shaped scaling
behavior for MD simulations of uniaxial compression that use a
zero-temperature heat bath in the b → 0 limit.
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TABLE III. Parameters for the linear transformations of σmax and
log10 ε̇eng in Eq. (8) that map the experimental data in Fig. 1 to one of
four representative MD simulations of Ni62Nb38 (EAM) undergoing
uniaxial compression: (1) T0 = 0 K, b = 10−5 eV ps Å−2; (2) T0 =
0 K, b = 10−3 eV ps Å−2; (3) T0 = 40 K, b = 6 × 10−5 eV ps Å−2;
and (4) T0 = 40 K, b = 5 × 10−4 eV ps Å−2 (see Fig. 8). Here, cε̇,e =
−ηε̇,e log10 kε̇,e.

Metallic glasses kσ,e cσ,e ηε̇,e cε̇,e T0, b

Ti40Zr25Ni8Cu9Be18 2.49 6.45 0.150 8.30 (3)
Ti45Zr16Ni9Cu10Be20 13.1 −14.5 0.233 9.93 (2)
Zr53Cu30Ni9Al8 3.12 5.81 0.356 8.11 (4)
Ni62Nb38 1.36 7.49 0.228 9.68 (2)
Zr50.7Cu28Ni9Al12.3 1.26 8.86 0.370 7.26 (1)
Zr52.5Cu17.9Ni14.6Al10Ti5 0.962 9.53 0.490 6.98 (1)
Zr64.13Cu15.75Ni10.12Al10 0.714 10.1 1.50 1.95 (1)
Zr41.2Ti13.8Cu12.5Ni10Be22.5 3.78 3.97 0.157 8.93 (2)
Zr59.3Cu28.8Nb1.5Al10.4 1.80 8.04 0.541 7.98 (1)
Pd40Ni40P20 3.92 4.55 0.389 7.74 (1)
Ti32.8Zr30.2Cu9Ni5.3Be22.7 1.15 8.97 0.408 7.65 (1)
Zr38Ti17Cu10.5Co12Be22.5 1.42 8.54 0.435 7.92 (1)

power law with decreasing T † in the high-strain-rate branch.
Hence the MD simulation results for Ni62Nb38 (modeled
with an EAM atomic interaction) can also be mapped to
the compressive-strength-versus-temperature curve from MD
simulations of Zr60Cu29Al11 (modeled using an EAM atomic
interaction) and Ni62Nb38 (modeled using the LJ atomic inter-
action).

We now compare the experimental data for the compres-
sive strength of metallic glasses [5,9–19] in Fig. 1 with the
results for the compressive strength from the MD simula-
tions of Ni62Nb38 (modeled using EAM atomic interactions)
undergoing uniaxial compression. Since the experiments do
not provide measurements of the local temperature of the
sample, we first identify the best match for each of the 12
experimental data sets for σmax versus ε̇eng with the data from
one of four representative MD simulations of Ni62Nb38 after
applying linear transformations in σmax and log10 ε̇:

σ †
max = kσ,eσmax + cσ,e,

ε̇†
eng =

(
ε̇eng

kε̇,e

)ηε̇,e

, (8)

where the scaling parameters kσ,e, cσ,e, kε̇,e, and ηε̇,e are pro-
vided in Table III of Appendix E. The four representative MD
simulations have different combinations of T0 and b: (1) T0 =
0 K, b = 10−5 eV ps Å−2; (2) T0 = 0 K, b = 10−3 eV ps Å−2;
(3) T0 = 40 K, b = 6 × 10−5 eV ps Å−2; and (4) T0 = 40 K,
b = 5 × 10−4 eV ps Å−2. This set of linear transformations is
denoted as method II.

We then use the scaled temperature T † versus strain rate
ε̇†

eng from the appropriate representative MD simulation [cf.
Eq. (6)] to infer the compressive strength σ †

max versus tem-
perature T † for each of the experimental data sets. In Fig. 8,
we show that the σ †

max-versus-T † curves for the experimental
data are similar to the data for the MD simulations in Fig. 7.
In Appendix E, we validate the scaling approach by compar-
ing the results obtained from methods I and II using only

FIG. 8. Scaled compressive strength σ †
max vs scaled temperature

T † from experimental studies of uniaxial compression of metal-
lic glasses (using the same symbols as in Fig. 1) collapsed onto
one of four representative simulation studies of Ni62Nb38 (modeled
using EAM atomic interactions) undergoing uniaxial compression
with different combinations of the heat bath temperature and damp-
ing coefficient (T0 = 0 K, b = 10−5 eV ps Å−2; T0 = 0 K, b =
10−3 eV ps Å−2; T0 = 40 K, b = 6 × 10−5 eV ps Å−2; and T0 =
40 K, b = 5 × 10−4 eV ps Å−2) indicated by the solid lines. The
dash-dotted lines indicate the chevron-shaped scaling behavior for
simulations with a zero-temperature heat bath in the b → 0 limit.

the MD simulation data on Ni62Nb38 (modeled with EAM
atomic interactions) for σ ∗

max(T ∗) and σ ∗
max(ε̇eng), separately.

The qualitative agreement of the compressive strength versus
temperature for both the simulation and experimental results
suggests that the mechanical response of metallic glasses
under uniaxial compression can be described by the general
deformation mechanisms included in the MD simulations.

D. Deformation mechanisms

In Fig. 9, we provide a sketch of the chevron-shaped
scaling curve for the compressive strength σ †

max versus
temperature T † for metallic glasses undergoing uniaxial com-
pression, which illustrates its main features. In driven, thermal
systems, such as metallic glasses undergoing uniaxial com-
pression, thermal fluctuations can arise from the heat bath to
which the system is coupled or from the applied deforma-
tion. When the influence of the heat bath is small, i.e., for
simulated systems coupled to a low-temperature heat bath,
the compressive strength versus temperature can be described
as a chevron-shaped curve with two main branches—the
linear lower branch and power-law upper branch—as shown
in Fig. 9. In the lower branch, the mechanical response is pri-
marily driven by localized shear transformation zones (STZs).
The STZs cause serrations in the stress-versus-strain curve,
where quasilinear increases in stress are punctuated by rapid
stress drops, as shown in Fig. 2(a). Higher strain rates in
the lower branch of the chevron-shaped curve give rise to
local effective heating of the system since there is less time
per strain to dissipate the increased kinetic energy generated
by the increased strain rate. Thus thermal softening (i.e.,
negative strain rate sensitivity of the compressive strength)
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FIG. 9. Sketch of the scaled compressive strength σ †
max plotted as

a function of the scaled temperature T † for metallic glasses under-
going uniaxial compression and coupled to low-temperature (black
solid lines) and high-temperature (red dashed lines) heat baths. The
hollow arrow signifies the direction of increasing damping coef-
ficient, while the thin solid blue arrows indicate the direction of
increasing strain rate.

occurs in the lower branch. In contrast, the power-law upper
branch at high strain rates corresponds to more homogeneous
deformation and nonserrated stress-versus-strain curves. The
more rapid compression process leads to increased poten-
tial energy, which cannot be converted rapidly into kinetic
energy in the high-strain-rate regime. Therefore the ther-
mal activation of shear transformation zones decreases in
this regime, which leads to an increase in the compressive
strength (i.e., positive strain rate sensitivity of the compressive
strength).

For systems coupled to higher-temperature heat baths, we
find a transition of the strain rate sensitivity of the compressive
strength from positive to negative at low to intermediate strain
rates, in addition to a transition from negative to positive strain
rate sensitivity of the compressive strength from intermediate
to high strain rates, as shown in Fig. 9. The positive strain
rate sensitivity of the compressive strength in the low-strain-
rate regime arises from thermally activated barrier hopping
in the potential energy landscape since low strain rates allow
the system to identify pathways to escape from the current
potential energy basin [27]. In contrast to the power-law upper
branch with positive strain rate sensitivity of σ †

max at high
strain rates, the temperature increases with strain rate in the
low-strain-rate regime with positive strain rate sensitivity.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

Using MD simulations of metallic glasses (Ni62Nb38 and
Zr60Cu29Al11) undergoing uniaxial compression, we investi-
gate the role of thermal fluctuations in determining the strain
rate sensitivity of the compressive strength. When we con-
sider metallic glass samples coupled to a zero-temperature
heat bath, we show that the compressive strength versus
temperature obeys a chevron-shaped scaling curve in the
small-damping-parameter limit. The scaling curve possesses

two branches: The linear lower branch with negative strain
rate sensitivity and the power-law upper branch with positive
strain rate sensitivity. For systems with nonzero-temperature
heat baths, the compressive strength versus temperature de-
viates from the scaling curve at low strain rates, where the
compressive strength initially increases with temperature, but
it rejoins the scaling curve as the strain rate increases. Higher
values of the damping coefficient also cause the compres-
sive strength to deviate from the chevron-shaped scaling
curve at low strain rates, but the compressive strength con-
verges to the scaling curve at high strain rates. For all bath
temperatures, we find a range of damping coefficients over
which the compressive strength is nonmonotonic in strain
rate. We also compare the results from the MD simulations
of Ni62Nb38 and Zr60Cu29Al11 with experimental results for
the compressive strength of 12 metallic glasses [5,9–19].
Each of the alloys obeys a different unscaled-compressive-
strength-versus-strain-rate relation. However, we show that
the compressive-strength-versus-strain-rate data from these
diverse alloys can be mapped (using linear transforma-
tions) onto the same chevron-shaped σ †

max-versus-T † scaling
curves as found in the MD simulations of Ni62Nb38 and
Zr60Cu29Al11. These results suggest that the chevron-shaped
scaling behavior, which is determined by local temperature
fluctuations and internal dissipation, controls the mechan-
ical response of metallic glasses at finite strain rates and
provides a general framework for understanding the strain
rate sensitivity of the compressive strength of metallic
glasses.

In this paper, we focused on the uniaxial compression of
metallic glasses at finite strain rates. However, we also believe
that our results will hold for other deformations, such as pure
shear and bending, applied to metallic glasses at finite rates.
Furthermore, our work emphasizes that internal heating and
dissipation mechanisms control the strain-rate-dependent me-
chanical response. Thus, in future computational studies, we
can calculate the local damping coefficients that correspond to
nonaffine collective motions of atoms, or shear transformation
zones, that give rise to local heating and dissipation. For
example, in recent work [25] we developed an exact method
to identify and track local deformations during stress drops
that result from athermal, quasistatic simple shear applied
to model glasses. In future studies, we will generalize the
methods for identifying shear transformation zones [28–31] in
metallic glasses deformed at finite strain rate and temperature.
In addition, this paper focused on the preyield regime without
shear bands [32–35]. Predicting the formation and propaga-
tion of large-scale shear bands as the system transitions from
the preyield regime to the postyield regime is an active area of
our future research.
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APPENDIX A: INTERATOMIC POTENTIALS

We consider both embedded atom method (EAM) and
Lennard-Jones interatomic potentials to model Ni62Nb38 and
Zr60Cu29Al11 metallic glasses undergoing uniaxial compres-
sion.

1. Embedded atom method

For EAM interaction potentials, the total potential energy
is U = ∑

i Ui, where the potential energy Ui for each atom i
includes both many-body and pairwise contributions:

Ui = fα

⎛
⎝∑

j �=i

ρβ (ri j )

⎞
⎠ + 1

2

∑
j �=i

ϕαβ (ri j ), (A1)

where ri j is the center-to-center separation between atoms
i and j, the many-body embedding function fα depends on
the electron density ρβ , ϕαβ is the pairwise potential energy
function, and α, β = A, B are labels for the element types
[36]. The summation is over all neighbors j of atom i within
a cutoff distance rc = 6.9 and 6.5 Å for Ni62Nb38 [21] and
Zr60Cu29Al11 [22], respectively. Note that the forms of the
embedding function and pairwise potential are specific to each
alloy.

2. Lennard-Jones pairwise interactions

We also employ a pairwise Lennard-Jones interaction po-
tential to model Ni62Nb38 metallic glasses. We assume that
atom types α, β = A, B, which represent Nb and Ni, inter-
act via the truncated and force-shifted Lennard-Jones (LJ)
potential:

Uαβ (ri j ) = φαβ (ri j ) − φαβ (rc) − (ri j − rc)
dφαβ

dri j

∣∣∣∣
ri j=rc

,

(A2)

where ri j is the center-to-center separation between atoms i
and j, the cutoff distance rc = 2.5σαβ , and

φαβ (ri j ) = 4εαβ

[(
σαβ

ri j

)12

−
(

σαβ

ri j

)6
]
. (A3)

The total potential energy is U = ∑
i> j Uαβ (ri j ). The parame-

ters σBB/σAA = 0.84, σAB = (σAA + σBB)/2, and εBB/εAA =
0.5863 were chosen to match the relative sizes and cohesive
energies of Nb and Ni. The heat of mixing �Hmix from
experiments is used to set εAB/εAA = (1 + εBB/εAA)/2 −
�Hmix/εAA = 0.834 25 [37]. The mass ratio for NiNb alloys
is mA/mB = 1.583.

To compare the MD simulation results for uniaxial com-
pression of Ni62Nb38 using the LJ potential with those for the
EAM potential [21], we set σAA = 3.0 Å for the atomic diam-
eter and mA = 92.91 amu for the mass of Nb. To determine
the cohesive energy scale εAA/kB, we calculate the position
fluctuations of atoms in Ni62Nb38 glasses as a function of tem-
perature. We measure the mean-square displacement (MSD),

MSD(t ) =
〈

1

N

N∑
i=1

(ri(t ) − ri(0))2

〉
, (A4)

FIG. 10. Mean-square displacement at short times, 〈MSD(ts )〉
/V 2/3, normalized by the surface area of the sample, V 2/3, plotted as a
function of temperature T for EAM and LJ simulations of Ni62Nb38.
The temperatures of the LJ systems were scaled by εAA/kB = 3400 K
so that they collapse onto the data for the EAM simulations at low
temperatures. Data are shown for four EAM and two LJ simulations
with samples prepared at different cooling rates R.

where ri(t ) is the position of atom i at time t and the angle
brackets indicate an average over time origins. In Fig. 10,
we show the mean-square displacement at short times (ts =
20 ps in the EAM simulations and ts = 20εAA/kB ≈ 10.9
ps in the LJ simulations) as a function of temperature for
EAM and LJ models of Ni62Nb38 that were first rapidly
cooled to low temperature and then successively heated above
the glass transition temperature. We find that by choosing
εAA/kB = 3400 K we can scale the MSD(ts) for the LJ simu-
lations onto those for the EAM simulations for temperatures
below the glass transition temperature.

APPENDIX B: EAM SIMULATIONS OF Ni62Nb38

IN FINITE-TEMPERATURE HEAT BATHS

In this Appendix, we show the cooling-rate-scaled com-
pressive strength σ ∗

max as a function of ε̇eng obtained from

FIG. 11. Cooling-rate-scaled compressive strength σ ∗
max plotted

vs strain rate ε̇eng for Ni62Nb38 (EAM) coupled to heat baths with
(a) T0 = 2 K, (b) T0 = 10 K, (c) T0 = 40 K, and (d) T0 = 120 K,
with different damping coefficients b.
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FIG. 12. Cooling-rate-scaled temperature T ∗ plotted vs strain
rate ε̇eng for Ni62Nb38 (EAM) coupled to heat baths with (a) T0 = 2 K,
(b) T0 = 10 K, (c) T0 = 40 K, and (d) T0 = 120 K, with different
damping coefficients b. Best fits of T ∗(ε̇eng) to Eq. (6) for different b
values are shown as dash-dotted lines.

MD simulations of Ni62Nb38 metallic glasses (using an EAM
interatomic potential) undergoing uniaxial compression and
coupled to heat baths over a range of temperatures: T0 = 2,
10, 40, and 120 K. In Fig. 11, we find that the strain rate
regime, over which the compressive strength decreases with
strain rate, narrows with increasing heat bath temperature and
is observed at lower damping coefficients. Unlike systems
coupled to low-temperature heat baths, where σ ∗

max generally
decreases linearly with ε̇eng in the low-strain-rate regime,
σ ∗

max initially increases with ε̇eng for systems coupled to
high-temperature heat baths. For systems with nonzero-
temperature heat baths, the temperature during compression
also follows the T ∗-versus-ε̇eng relation in Eq. (6), as shown
in Fig. 12. The fitting parameters to Eq. (6) are provided

FIG. 13. Cooling-rate-scaled compressive strength σ ∗
max plotted

vs cooling-rate-scaled temperature T ∗ from MD simulations of
Ni62Nb38 (EAM) undergoing uniaxial compression and coupled to
nonzero-temperature heat baths. These data correspond to the same
data in Figs. 11(a)–11(c) and 12(a)–12(c). The MD simulations with
different damping coefficients are represented by distinct symbols,
and the data for T0 = 2, 10, and 40 K are differentiated by the use of
fully filled, top-filled, and right-filled symbols, respectively.

FIG. 14. (a) Compressive strength σmax plotted as a function
of strain rate ε̇eng for Zr60Cu29Al11 (modeled using EAM atomic
interactions) undergoing uniaxial compression and coupled to a zero-
temperature heat bath. The metallic glass samples were prepared
using cooling rate R = 1012 K/s. Each data point represents an av-
erage of 20 independently generated samples, and different symbols
indicate varying b values. (b) Average temperature T (over the strain
interval 0 < εeng < 0.076) for the data in (a) plotted vs strain rate
ε̇eng. Best fits of T (ε̇eng) to Eq. (6) for different b values are shown as
dash-dotted lines. (c) Compressive strength σmax plotted vs average
temperature T for data in (a) and (b).

in Table I of Appendix E. As discussed in Sec. III B, for
systems with nonzero-temperature heat baths, σ ∗

max versus T ∗
deviates from the scaling curve at low strain rates but rejoins
the scaling curve at large strain rates, as shown in Fig. 13.

APPENDIX C: EAM SIMULATIONS OF Zr60Cu29Al11

IN ZERO-TEMPERATURE HEAT BATHS

In this Appendix, we provide additional details con-
cerning the MD simulations of uniaxial compression of
Zr60Cu29Al11 modeled using an EAM potential and coupled
to a zero-temperature heat bath. The results for the com-
pressive strength and temperature are similar to those for
Ni62Nb38 using both the LJ and EAM potentials. In Fig. 14,
we show the compressive strength σmax and strain-averaged
temperature T versus strain rate ε̇eng for Zr60Cu29Al11 samples
prepared using a cooling rate of R = 1012 K/s. The tem-
perature was obtained by averaging over the strain interval
0 < εeng < 0.076, which includes the peak in the compressive
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FIG. 15. (a) Compressive strength σmax vs strain rate ε̇eng for
LJ simulations of Ni62Nb38 undergoing uniaxial compression and
coupled to a zero-temperature heat bath. The metallic glass samples
were generated at cooling rates R = 1012 (fully filled symbols), 1013

(top-filled), and 1014 (right-filled) K/s. Each data point represents
an average of 45 independently generated samples. (b) Average tem-
perature T (over the strain interval 0 < εeng < 0.065) for the data
in (a) plotted vs strain rate ε̇eng. The symbol style is the same as in
(a). (c) Cooling-rate-scaled and averaged compressive strength σ ∗

max

plotted vs the cooling-rate-scaled and averaged temperature T ∗ for
the data in (a) and (b). In (a)–(c), the different symbols denote the
varying damping coefficients.

stress. Again, the compressive strength and average tem-
perature are nonmonotonic as a function of strain rate for
nonzero damping coefficients, as shown in Fig. 14. We show
the relation between the compressive strength σmax and the
average temperature T for the EAM model of Zr60Cu29Al11

in Fig. 14(c). We find qualitatively similar behavior for σmax

versus T for EAM simulations of both Zr60Cu29Al11 and
Ni62Nb38.

APPENDIX D: LENNARD-JONES SIMULATIONS
OF Ni62Nb38 IN ZERO-TEMPERATURE HEAT BATHS

In this Appendix, we describe the results from MD simula-
tions of Ni62Nb38 (modeled using Lennard-Jones interactions)
undergoing uniaxial compression and coupled to a zero-
temperature heat bath. In Figs. 15(a) and 15(b), we plot the
compressive strength σmax and temperature T as a function
of strain rate ε̇eng. As found for the EAM simulations of

FIG. 16. Comparison of the results for methods I and II for
obtaining the scaled temperature, T †

7 from Eq. (7) and T †
6, 8 from

Eqs. (6) and (8), using only the MD simulation data of Ni62Nb38

(EAM) undergoing uniaxial compression and coupled to nonzero-
temperature heat baths. The dashed line indicates T †

6,8 = T †
7 .

Ni62Nb38, both σmax and T possess nonmonotonic behav-
ior as a function of strain rate. As discussed in Sec. III A,
the compressive strength and temperature display self-similar
scaling with the cooling rate R: σ ∗

max = 〈σmax(R/Rc)γ 〉R and
T ∗ = 〈(T − T0)(R/Rc)−λ〉R, where Rc = 1 K/s is a refer-
ence cooling rate, γ ≈ 0.060, and λ ≈ 0.039 for Ni62Nb38

with LJ interactions. In Fig. 15(c), we show the relation be-
tween the cooling-rate-scaled compressive strength σ ∗

max and
the cooling-rate-scaled temperature T ∗ for the LJ model of
Ni62Nb38. σ ∗

max versus T ∗ for the LJ simulations is similar to
that for the EAM simulations of Ni62Nb38 as shown in Fig. 5.
However, the magnitude of the slope of the linear branch for
the LJ simulations is half of that from the EAM simulations
of Ni62Nb38, and the power-law exponent of the high-strain-
rate branch is ν ≈ 9.6, which is approximately twice the
value from the EAM simulations of Ni62Nb38. One possible
explanation for the difference in the slopes and power-law
exponents of the scaling behavior of σ ∗

max(T ∗) is the difference
in the specific heat obtained for the LJ and EAM potentials of
Ni62Nb38 [38].

APPENDIX E: TABLES OF PARAMETERS IN EQS. (6)–(8)
AND COMPARISON OF TEMPERATURE

SCALING METHODS

As described in Sec. III C, the mapping of σ ∗
max versus

T ∗ for MD simulations that use a nonzero-temperature heat
bath onto σ ∗

max versus T ∗ for MD simulations that use a zero-
temperature heat bath involves the linear transformation of
T ∗ in Eq. (7). We refer to this approach as method I. The
mapping of the experimental data of σmax versus ε̇eng onto the
scaled MD simulation results for σ †

max versus T † is referred to
as method II. For method II, we first linearly scale log10 ε̇eng

[Eq. (8)] from the experimental data and then determine the
corresponding T † using Eq. (6) from the MD simulation data.
As a test, we can carry out method II on the MD simulation
data to obtain T †

6,8 and compare it with T †
7 from method I
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for the same data. In Fig. 16, we show that T †
6,8 ∼ T †

7 , which
suggests that methods I and II provide consistent estimates of
the temperature.

In this Appendix, we also provide the fitting parame-
ters for quantifying the relationship between temperature and
strain rate and parameters of the linear transformations that
allow us to compare the results for the compressive strength
from different MD simulations and experimental studies of
metallic glasses. In Table I, we present the fitting parame-
ters for determining T (ε̇eng) [Eq. (6)] for Ni62Nb38 (EAM)

systems, both when coupled to zero-temperature heat baths
[Fig. 4(b)] and when coupled to nonzero-temperature heat
baths (Fig. 12), as well as for Zr60Cu29Al11 coupled to zero-
temperature heat baths [Fig. 14(b)]. The parameters for Eq. (7)
used to map σ ∗

max versus T ∗ for MD simulations that use a
nonzero-temperature heat bath onto σ ∗

max versus T ∗ for MD
simulations using a zero-temperature heat bath are listed in
Table II. Finally, the parameters for method II to map the
results of the experimental studies onto the results from the
MD simulations are provided in Table III.
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