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We report the results of nuclear magnetic resonance imaging experiments on vertically
vibrated granular beds of mustard grains. A novel spin-echo velocity profiling technique
was developed that allows granular temperature, mean velocity and packing fraction
distributions within the three-dimensional cell to be measured as a function of both
vertical position and vibration phase. Bimodal velocity distributions were observed at
certain portions of the vibration cycle, and in general the ability to acquire time-resolved
data demonstrated the significant distortions to the velocity distributions and the
systematic errors in calculated temperature distributions that may arise with time-
averaged measurements. The experimental behaviour was compared with predictions
from a time-varying one-dimensional hydrodynamic model using the experimental
parameters as input to the code. In both cases, damping of longitudinal sound waves was
linked to significant volume heating effects, which contrasts with the usual heat
transport mechanism (i.e. diffusion from the boundaries) currently assumed in most
steady-state models. This leads to a new explanation for the counterintuitive upturn in
granular temperature in vibrofluidized granular beds, based on amplification and
damping of sound waves in the high-altitude region.

Keywords: granular materials; rapid granular flow; nuclear magnetic resonance;
magnetic resonance imaging; hydrodynamic model

1. Introduction

Many materials in the chemical, food and pharmaceutical industries are
processed, transported and stored in granular form. Over the years, an extensive
engineering literature has been built up which is capable of describing the
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constitutive behaviour of such granular materials over certain operating ranges.
However, until the past 15-20 years, the approach was largely empirical and
developed at the macroscopic level. More recently, the emphasis has shifted
towards a more fundamental theoretical and experimental understanding built
up from the microscopic (single grain) level. For the simplest state—so-called
granular gases—there is now a theoretical framework relating variables such as
packing fraction, granular temperature, shear rate and heat flux for idealized
monodisperse spherical particles as well as for some binary systems (Jenkins &
Richman 1985b; Jenkins & Mancini 1989). ‘Granular temperature’ is a measure
of the velocity fluctuations of the grains and is defined as the average kinetic
energy of the grains by analogy to the usual thermodynamic temperature, which
is the average kinetic energy of the molecules. The thermodynamic temperature
is normally irrelevant in these problems because the mass of a grain is so much
greater than the mass of a molecule. The dissipative nature of the collisions
between grains means a granular gas needs continual input of energy to sustain
its motion and is therefore far from equilibrium. Nevertheless, the dynamic
behaviour of a fluidized granular material shows some striking similarities with
the behaviour of a fluid in thermal equilibrium, e.g. in its microscopic structure
(Warr & Hansen 1996), self-diffusion properties (Wildman et al. 1999) and
convection behaviour (Wildman et al. 2001a). In spite of the progress, however,
there is still active debate about issues as fundamental as the correct form of the
equation to describe heat flux in such dissipative materials (Barrat et al. 2005).

One of the main geometries used over the years for investigating granular gases in
the absence of shear has been the vibrofluidized bed. This consists of a cell that
undergoes high-frequency agitation of sufficient amplitude to fluidize the granular
medium contained within it. A range of experimental techniques has been applied
to such cells, including high-speed photography (Warr et al. 1995) and—in three
dimensions—positron emission particle tracking (PEPT; Wildman et al. 2001b)
and nuclear magnetic resonance (NMR; Caprihan et al. 1997; Yang & Candela
2000; Yang et al. 2002; Huan et al. 2004). Although all three techniques can, in
principle, provide data that are resolved in time through the vibration cycle, much
greater emphasis has normally been placed in such studies on the time-averaged
behaviour rather than on the transient effects. On the other hand, molecular
dynamics simulations and hydrodynamic modelling by Bougie et al. (2002) have
demonstrated the probable importance of dynamic effects. One of the main reasons
for the experiments described in this paper was therefore to investigate the time-
varying axial velocity distributions in a three-dimensional vibrofluidized granular
bed that has largely been ignored in past experimental literature.

A second motivation was to explore new mechanisms for the counterintuitive
upturn in granular temperature at high altitudes observed both experimentally
(Warr et al. 1995; Wildman et al. 2001b; Huan et al. 2004) and numerically
(Helal et al. 1997; Brey et al. 2001; Ramirez & Soto 2003) in some vibrofluidized
granular beds. The phenomenon is counterintuitive because, for a cell with
smooth vertical sidewalls, the energy needed to sustain the fluidized state is
injected almost entirely by the base of the cell. One would therefore expect a
monotonically decreasing temperature with distance from the base, the
temperature gradient in the vertical direction at any horizontal slice being
sufficient for the energy flux through the slice to balance the rate of dissipation
within the volume of material lying above it. One explanation for this
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phenomenon is that, for dissipative granular materials, the usual Fourier law
may need to be modified to include a term in the packing fraction gradient, as
well as the temperature gradient (Brey et al. 1998; Sela & Goldhirsch 1998; Soto
et al. 1999; Barrat et al. 2005), i.e.

orT on

J ryat v (1.1)
where z is height; T is granular temperature; n is packing fraction; J is energy
flux; k is thermal conductivity; and u is an equivalent transport coefficient for the
packing fraction gradient term. This term arises theoretically through the
expansion of the hydrodynamic equations to Navier—Stokes order. u is
proportional to (1—e), where e is the coefficient of restitution, and so disappears
in the case of an elastic fluid. The presence of the extra term leads to the
prediction of a finite constant temperature gradient at high altitudes in a
vibrofluidized bed (Brey et al. 2001; Ramirez & Soto 2003).

An alternative viewpoint however (J. T. Jenkins 2005, personal communication)
is that, since the expansion is done to first order, terms that are quadratic in the
spatial gradients, the dissipation and their products may be neglected. As a
consequence, terms in the heat flux that are a product of (1 —e) and Vg should, for
consistency, be ignored. From this viewpoint, the zero-flux condition at high
altitudes implies a zero temperature gradient there, and therefore—for a stationary
system—provides no explanation for the upturn in temperature. The correct heat
flux law for granular materials is therefore still an open question. It should also be
pointed out that an alternative mechanism based on convection has been proposed
(Wildman et al. 2001b), though the magnitude of this effect would appear to be too
small to explain the phenomenon. Dynamic effects have however been largely
ignored, despite the fact that all experiments on steady-state vibrofluidized beds
involve continual input of kinetic energy and are inherently dynamic. It is therefore
of interest to investigate whether alternative dynamic mechanisms could be
responsible for the presence of the upturn.

The structure of the paper is as follows. First, in §2, an experimental method
based on NMR for providing the necessary phase- and height-resolved data
within a three-dimensional system is described. This is followed in §3 by an
outline of a numerical solution to the hydrodynamic equations for a dissipative
granular gas, using experimentally measured parameters as input to the code.
Section 4 describes the main experimental and numerical results, which are then
compared and discussed in §5. Finally, in §6, we propose what we believe to be a
novel dynamic mechanism for the granular temperature upturn observed in time-
averaged experiments on vibrofluidized granular beds.

2. Experimental

(a) Granular system

Most NMR acquisitions generate signal from a liquid phase such as water or oil
within the sample. For this reason, naturally occurring grains such as poppy or
mustard seeds (Yang et al. 2002) have been used in previous granular materials
studies. For the present work, we used mustard seeds on account of the relatively
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large diameter and narrow size range (d=2.04+0.23 mm), and relatively small
deviations from spherical geometry (aspect ratio=1.17+0.09). The mean grain
mass was 5.66 mg.

A cylindrical cell containing the grains was machined from a permanently anti-
static acetal co-polymer to reduce electrostatic charging effects, with a glass disc
insert (thickness 1 mm) at the bottom. The internal radius of R=9 mm was
constrained by the size of the NMR spectrometer bore, and the height was sufficient
to prevent collisions with the top wall. The cell was mounted on top of a glass rod
within the vertical bore; the rod was vibrated vertically by means of a camshaft and
separate aluminium horizontal drive shaft attached to a DC electric motor. The
lengths of the two driveshafts (1.0 m horizontal and 1.0 m vertical) were imposed by
the need to avoid placing the DC motor in the large stray magnetic field of the
superconducting magnet, thus restricting the maximum practical drive frequency to
approximately 40 Hz, somewhat lower than the value of 50 Hz typically used in
experimental studies using electromagnetic shakers (Warr et al. 1995; Wildman
et al. 2001b). The cell was evacuated to reduce air drag on the grains. Coefficients of
restitution were measured using high-speed photography as follows: mustard—
plastic, 0.6040.01; mustard—glass, 0.58 4-0.02; mustard—mustard 0.68+0.02. For
the measurement of the grain—grain coefficient of restitution, each of the two seeds
was suspended by a pair of thin Kevlar filaments to allow repeatable ‘head-on’
collisions with negligible post-impact rotation. The values quoted represent the
mean, and standard deviation in the mean, resulting from 10 impacts (mustard—
plastic), eight impacts (mustard—glass) and 20 impacts (mustard—mustard).

(b) NMR acquisition

A novel spin-echo velocity profiling technique allows velocity distributions
within the three-dimensional cell to be measured as a function of both vertical
position (2) and vibration phase (characterized by time ¢ after the trigger pulse).
The pulse sequence developed for this study is described by Mantle et al.
(in press). We chose here the vertical velocity component (v,) since the granular
temperature is normally highest in this direction, although other components
could be measured equally easily at the expense of additional acquisition time.
The measured signal integrates through the thickness of the cell; in effect, we
traded spatial resolution in the horizontal directions (z or y) for the time and v,
resolution that are the primary focus of this paper. Previous studies on two- and
three-dimensional vertically vibrated beds using high-speed photography and
PEPT (Warr et al. 1995; Wildman et al. 2001a) have demonstrated that the
main gradients in temperature and packing fraction occur along the z-direction,
with relatively minor perturbations in the horizontal directions.

All NMR experiments were carried out on a Bruker Biospin DMX 300
spectrometer operating at a 'H frequency of 300.13 MHz. Spatial resolution was
achieved using a three-orthogonal axis gradient system capable of producing a
maximum gradient strength of 1 T m ™. The field of view in the z-direction was
50.0 mm and the number of data points acquired was 128, thereby giving an axial
pixel resolution of 6z=390 um.

A 25mm 'H birdcage resonator was used to excite and detect the
magnetization from the mustard seeds and the 'H 90° pulse length was 32 ps.
The NMR pulse sequence of Mantle et al. (in press) has two distinct advantages
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over a single-spin or stimulated-echo velocity profile sequence (used by, for
example, Huan et al. (2004)): (i) it refocuses magnetization dephasing due to
constant motion in a linear background gradient (Pope & Yao 1993; Fukushima
1999) and (ii) the readout, or spatially encoding, gradients are also compensated
for velocity artefacts. Ramped gradients were used throughout to minimize extra
spin dephasing from magnetic fields created by eddy currents due to gradient
switching. The gradient ramp-up and ramp-down times were 100 ps. The total
echo time, TE, was 2.46 ms. Velocity encoding was achieved by using 64 equal
gradient increments from —0.6 to +0.6 Tm™'. The length of the velocity
encoding gradient, ¢, was 580 ps. The delay between velocity encoding gradient
pulses, 4, was 1.40 ms. The NMR signal excitation was triggered at a fixed phase
of the sample vibration. Twelve increments in the vibration phase were used to
sample one complete vibration cycle. The phase increments were calculated by
dividing the inverse of the vibration frequency by 12. Eight scans, at a recycle
time of 365 ms, were averaged to obtain a sufficient signal-to-noise ratio. Hence,
the total experimental time for a single vibration frequency was approximately
38 min. Following acquisition, the raw data were zero filled to 256 data points in
the velocity encode dimension, and then a two-dimensional Fourier transform
was applied to each of the 12 datasets to give spatially encoded, vibration phase-
dependent, velocity profiles, denoted here by S(v,, z, t). These parameters enable
determination of velocities within a range —0.95 to +0.95ms~ ' and with a
resolution of 0.007 m s~ '. A unique feature of the data presented here is that the
'H background signal resulting from the acetal co-polymer sample holder,
which is seen as a vertical line in the Fourier transformed data, provides a
useful reference for the phase of the vibration cycle and an internal reference for
the velocity.

3. Numerical

The experimental system was simulated using continuum equations derived by
Richman and Jenkins (Jenkins & Richman 1985b,a). The time-varying three-
dimensional equations were reduced to one spatial dimension by assuming
homogeneity in the horizontal directions. A modified no-particle-flux velocity
boundary condition was used to allow the granular layer to smoothly fly off the
bottom plate (Shattuck in press). At the bottom plate, a temperature boundary
condition for a smooth boundary (Jenkins & Louge 1997) was also used, with a
no-flux condition at the top. An extra dissipation term proportional to the collision
rate was added to account for the collisional losses with the vertical walls of the
chamber. Without this term, the mean temperature was found to be higher than
that of the experiment. However, a time-averaged temperature upturn is seen
regardless of the presence or absence of this term. The equations were solved using
an adaptive first-order time step with a second-order spatial derivative integration
scheme. Some numerical viscosity was introduced to smooth the shocks during the
initial transient, but this was subsequently turned off and the simulations were run
until a periodic steady state was achieved. The system was driven by sinusoidally
vibrating the entire system, with the experimentally measured amplitude and
frequency, as well as cell dimensions and grain parameters, as the input to the
code. More details may be found in appendix A.
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Figure 1. Signal S(v,, z ¢) for a vibrated granular bed. Each frame is an individual ¢ value
corresponding to 1/12 of the frame period of 26.2 ms. Horizontal and vertical axes represent v, and
z with units of m s~ ! and mm, respectively. The strongest signal appears red, the weakest blue.

4. Results

Experiments were carried out over a range of vibration amplitudes and
frequencies, and for different numbers of grains (N,) in the cell. Most of the
results presented in the paper come from a single dataset with the following
parameters: amplitude A;=1.84 mm, frequency f=38.2 Hz and N,=110, which
corresponded to approximately two layers in the condensed phase.

The raw data for the distribution S(v,, z, t) are shown in figure 1 as a series of
frames, with an interframe time of 2.18 ms, and where within each frame the
horizontal and vertical axes represent v, and z, respectively. Qualitatively similar
behaviour was found in the numerical simulation results. Frame 1 is the first
after the trigger pulse. Within each frame, the central ‘blob’ is the signal from
the mustard grains. Some signal from the cell wall and base is also apparent:
since the entire cell is moving upwards at the same velocity, this shows up as a
vertical line whose horizontal position varies from frame to frame. The increase
in signal strength near the bottom of this line occurred at the interface between
the glass insert and the base of the plastic cell (marked on frame 1 of figure 1)
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Figure 2. (a) Signal S(v,, 2, t) after integration along the v, direction. The approximate base motion is
highlighted by the white curve. (b) Results of a one-dimensional hydrodynamic (Jenkins Richman)
model using the experimentally determined base motion as one of the boundary conditions.

and provided a convenient marker for the origin of the z-axis, defined as the
mean location of the top (i.e. impacting) surface of the glass plate. The vibration
amplitude A derived from the wall velocity was found to be consistent to within
0.6% of the value determined from the vertical position of the glass base. The
amplitude of the first harmonic in the base position was approximately 11% of
the fundamental, with the amplitude of each of the higher harmonics under 4%.
This relatively high spectral contamination of the fundamental sine wave is likely
to be due to mechanical resonances in the long drive train and represents one of
the main differences between the experimental situation and the numerical
model.

Integration of S along the v, direction provides a signal proportional to particle
density as a function of z and ¢ which is shown in figure 2a. The equivalent output
from the numerical code, using the experimentally determined coefficients of
restitution, is shown in figure 2b. When plotting figure 2b, it was necessary to
estimate the experimental phase offset. If we approximate the position of the top
glass surface as

2, = Ay cos(2mft + ¢), (4.1)
a cycle-averaged phase angle ¢ at frame 1 (t=0) was estimated as 1.38 rad from
the real and imaginary parts of the Fourier transform of the measured z, values.
However, a value of 1.05 rad gave a closer match to the z, values during the part
of the cycle at which the majority of impacts occurred and was used to plot the
image in figure 2b as well as the white lines on figure 2a,b.
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Figure 3. Example of a bimodal velocity distribution from frame 9 of an experiment with the
following parameters: f=31.8 Hz, Ay=1.68 mm, N,=55, z=4.5 mm.

Both the experimental and numerical results presented in figure 2 are
qualitatively consistent and show the bed detached from the base and essentially
in free fall for the first few frames, before impacting on the base from frame 8.
The numerical results show somewhat less expansion of the bed than the
experimental ones, suggesting that dissipation has been overestimated with this
particular choice of coefficients of restitution. The main difference between the
two is that the strong signal peak adjacent to the base in frames 9-12 is largely
missing in the experimental dataset. This was borne out quantitatively by a drop
of 25% in the u-integrated signal for frames 9-11 compared with the average of
frames 1-5. The ‘missing’ signal corresponds to regions with intense accelerations
and is most probably caused by cycle-to-cycle variations (e.g. subharmonic
behaviour of the bed) or a slight drift in the vibration frequency during the
course of the experiment. However, this effect is a significant one only for low z
values on frames 9-11.

(a) Granular temperature distributions

In order to extract quantitative data from S(v,, 2, t), it is necessary to separate
out the signal due to the sidewall from that due to the mustard seeds, and
furthermore to take account of possible bimodal velocity distributions. As stated
in §3, a 'H background signal is produced from the acetal co-polymer sample
holder resulting in a signal from the cell sidewalls regardless of the presence or
absence of any grains.

An example in which the bimodal behaviour is particularly marked is shown in
figure 3 from frame 9 of a dataset with the following experimental parameters:
f=31.8 Hz, Ay=1.68 mm, Ny;=55 and z=4.5 mm. In general, the grains leaving
the base have a mean velocity and granular temperature that differ significantly
from those approaching the base, and therefore a sum of two Maxwellian
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Figure 4. Time-varying velocity probability density function (PDF) at a fixed height of 6.81 mm,
with Gaussian best fits (dashed lines). Plots are offset vertically with the local zeros indicated by
the horizontal dotted lines. The digit at the right-hand end of each plot identifies the frame number
defined in figure 1.

distributions is the obvious choice of fitting function, Si(v,, z, t). We also use a
narrow Gaussian function to approximate the sidewall signal, leading to the

following general form of Sg
AV 2
e (2= ()
Se(v,, 2, 1) = —exp| ————"— | + 4.2
f( ) JZ% \/57_1'0'j p 20_2 3 ( )

where the index j=0, 1, 2 represents, respectively, the sidewall signal and the
primary and secondary granular peaks, and C3 takes account of uniform
background noise. Equation (4.2) was fitted to the measured S(v, 2, t) on a
row-by-row basis so that C; (peak amplitude), o; (peak width) and <vgj)>
(velocity offset) are in general functions of z and ¢. The number of free parameters
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Figure 5. Velocity PDFs resulting from averaging the time-varying PDF at fixed heights of (a)
2.91 mm, (b) 6.81 mm and (c¢) 10.7 mm, together with Maxwellian least-squares fits.

was minimized first by estimating the values of V; and g, from data at the top of
the cell (where no grains were present) and second by including the secondary
peak only when justified by the data. Only 6% of the rows containing useful
signal required both peaks, and these occurred exclusively in the last four frames
of the cycle; for the remaining 94%, therefore, only five parameters were free:
Co, O, a1, <U£1)> and Cs.

Figure 4 shows the v, probability density function (PDF) at a fixed height of
z=6.8 mm for each of the 12 frames. The initial starting phase was assigned by
the location of the chopper slot on the drive shaft, which was essentially
arbitrary; the frame ordering for this and remaining figures has been shifted
cyclically for clarity of presentation, with the original frame numbers at the right
of the plot to allow cross-referencing with figures 1 and 2. Figure 4 is a horizontal
cross-section through the 12 frames of figure 1, after subtraction of the wall peak
and the background level, and normalization of its integral to unity. The best-fit
Gaussians are also plotted for comparison: considering the rapid cyclical changes
in temperature and mean velocity, these are remarkably good fits to the
measured distributions. The corresponding time-averaged PDF at the same
height is shown in figure 5b, together with its best-fit Gaussian. Unlike the time-
resolved plots, the time-averaged plot shows significant deviations from
Maxwellian form. Furthermore, the width of the best-fit curve implies a non-
dimensional granular temperature of 0.972, which is 23% higher than the average
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Figure 6. Experimental (a) and simulation (b) non-dimensional temperature profiles at each of 12
stages of the vibration cycle. Plots are offset vertically with the local zeros indicated by the
horizontal dotted lines.

temperature calculated from the 12 frames of figure 4. This effect is more
pronounced at lower altitudes (figure 5a, 2=2.91 mm) and less pronounced at
higher altitudes (figure 5¢, z=10.7 mm).

The z-component of temperature quoted above was calculated for the general
(bimodal) case as

I =g |G+ Gt (W)= ()] )

The corresponding expression for mean velocity is

(1 2
() = C’1<UZIC>1 —-:: gz<vz2 > | 4

Equations (4.3) and (4.4) reduce to the simple forms T, = o7 and (v,) = <v£1)> for
the case of a unimodal distribution (C,=0). Equivalent non-dimensional forms
for the variables are defined as follows:

T
TF =% 4.5
z gd’ ( a)
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Figure 7. Experimental (@) and simulation (b) non-dimensional mean velocity profiles at each of 12
stages of the vibration cycle. Plots are offset vertically with the local zeros indicated by the
horizontal dotted lines.

(4.5b)

(o) = 2 (4.5¢)

* g
1" =1/= 4.5d
Vel (4.54)

where g is the acceleration due to gravity.

and

(b) Packing fraction distributions

The time-varying non-dimensional temperature and mean velocity profiles are
shown in figures 6a and 7a, respectively. Integration of the fits over the velocity
direction yields estimates for the packing fraction profile

(5,1) = Nyd®  (Ci(2,t) + Cy(z,t))
nz 6R* [ (Ci(z,t) + Cy(z, t))dz’

which is shown in figure 8a. In each of these figures, the digit at the right-hand end
of each plot identifies the frame number defined in figure 1, which corresponds also
to the column index in the image of figure 2a. Corresponding results from the

(4.6)
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@ ® |

Figure 8. Experimental (@) and simulation (b) packing fraction profile at each of 12 stages of the
vibration cycle. Plots are offset vertically with the local zeros indicated by the horizontal
dotted lines.

simulations are presented in figures 65, 7b and 8b. The digit at the right-hand end of
each plot in these cases identifies the equivalent simulation frame number, which
also corresponds to the column index in figure 2b, i.e. frame 1 is defined by t=0 in
equation (4.1) and the phase offset value ¢=1.05rad. Differences between the
experiment and the model during the impact part of the cycle are sufficiently large
to cause a time lag in the propagating wave of approximately 10-20% of the
vibration period between the numerical and experimental results. For this reason,
experimental frame 3 is displayed adjacent to simulation frame 1, and so on for the
following frames, to aid the reader during the subsequent discussion section. The
results of averaging the time-varying granular temperature distributions from
figure 6 over a full cycle are shown in figure 9a.

(¢) Discussion of experimental errors

Several factors can contribute to errors in the experimental results and we give
here a discussion of some of the main ones. Among the systematic errors, the
‘missing’ signal corresponding to regions with intense accelerations, already
discussed in the paragraph preceding §4a, is probably the most significant. The
other main systematic error source is the fact that the grain velocities are in effect
calculated from a finite difference formula with a time-step equal to the delay

Proc. R. Soc. A (2007)
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Figure 9. (a) Time-averaged experimental temperature distribution and corresponding numerical
distribution for the case e=0.68, 3=4.67, where § is defined in appendix A. (b) Time-averaged
numerical temperature distribution for the case e=0.94, §=0.

between velocity-encoding gradient pulses, 4 (1.40 ms in these experiments). This
is a good approximation when the Enskog mean free time between collisions, 7, is
much larger than 4, but underestimates the true velocity as 7 approaches 4. An
order of magnitude estimate of 7 can be made using the values n=0.2, and
¢=0.2ms !, giving 7= 30 ms. We therefore conclude that this is not a significant
error source in these experiments except possibly at the highest particle densities
that may occur during the compressional phase of the wave.

The largest contribution to the random errors is non-ideal scan-to-scan
reproducibility, and this can be seen as a ‘speckled’ band surrounding the signal
peak on each of the frames of figure 1. The velocity distributions are fitted to
each row independently of the rest, and the noise-induced errors in granular
temperature and mean velocity can therefore be estimated from the spatial
fluctuations in the curves of figure 6a and 7a, respectively. It is clear from these
figures that the random errors are relatively small. For reasons of clarity, error
bars were therefore not added to the experimental results.

5. Discussion

The most important general observation is the highly transient nature of both
the granular temperature (figures 4 and 6) and mean velocity profiles (figures 4
and 7). A less significant time variation in the packing fraction distribution
(figure 8) is also apparent.

Figure 7 shows the presence of a relatively short intense compressional pulse
(region of negative gradient on the (v;) versus z curve) travelling in the positive
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z-direction as a result of the collision with the base earlier in the cycle, followed
by a longer, weaker dilatational phase. The speed of sound in a fluidized granular
medium of spheres is in the dilute limit (Bougie et al. 2002)

c= \/g (5.1)

The experimental non-dimensional sound speed may be estimated from figure 7
as 1.1, based on the fact that, between frames 1 and 8, the compressional wave
travelled approximately four particle diameters. This is in good agreement with
the value ¢*=1.15, obtained by substituting a time-averaged temperature value
of 0.8 from figure 9 into equation (5.1).

The compressional sound wave causes local heating as it passes, and hence
broadens the velocity distribution. For example, frames 11 and 12 in figure 4
have the broadest velocity distributions of the 12 and are therefore the hottest
phase in the cycle at this particular altitude (z"=3.34). Figure 7 shows that this
is also the point in the cycle where the compressional pulse is passing through the
same location. Comparison of figures 6 and 7 shows a local heating wave (a local
maximum in the granular temperature) travelling at the same speed and in phase
with the compressional sound wave in figure 7. This effect was also apparent in
the numerical studies of Bougie et al. (2002) on vibrated beds with significantly
larger numbers of grains (4-15 diameters deep in the condensed phase as opposed
to approximately two layers in this study). However, since the focus of that
paper was on the formation and propagation of shock waves, the local
temperature enhancement was not analysed in detail.

The heat equation for a three-dimensional fluidized granular medium having a
non-zero velocity component only in the z-direction, denoted u, reads as follows:

or __ T  (2\[_ ou [ 4 ou\* 9 ( oT\_
at oz 3p P, Ela AT 02 \" 02 T Y
(5.2)

where p is mass density; p is pressure; A is the bulk viscosity; us is the shear
viscosity; and vy and v, are, respectively, the dissipation rates due to grain—grain
and grain—wall collisions (Jenkins 1999; Bougie et al. 2002). Out of the six terms
on the right-hand side of equation (5.2), the last two are sink terms since vy and
v are always positive and can therefore be immediately dismissed as the source
of the temperature rise. The remaining four terms can, in principle, all contribute
in a positive sense to the d7/0t term.

The first term (—wu07/0z) represents advection of temperature due to the
mean velocity of the grains. The second term (—pdu/dz) represents internal
energy changes due to adiabatic compression or expansion and will be positive or
negative depending on the sign of du/0z. The third term, which represents
viscous dissipation, is always positive giving a non-zero average over a vibration
cycle. The region of highest damping of the wave—and hence the highest heating
rate of the granular gas—is the region of the graphs in figure 7 with the greatest
slope. Finally, the fourth term represents redistribution of heat through diffusion.

In contrast to the usual static modelling procedures (Helal et al. 1997; Yang et al.
2002; Martin et al. 2005), in which heat is assumed to diffuse into the gas from the
base of the cell, a very different and potentially equally important mechanism for
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Figure 10. Spatial variation of the six heat generation/sink terms from the right-hand side of
equation (5.2) after time-averaging through one vibration cycle.

energy transport in granular gases may therefore be volume heating within the gas,
due to viscous damping of travelling acoustic waves. The relative importance of the
different terms is shown in figure 10 after time-averaging over one complete
vibration cycle. The terms are plotted as a function of zg, i.e. the z coordinate
measured in the frame of the moving shaker, because this is the frame in which the
hydrodynamic equations are solved. The sum of all six terms was found to be very
close to zero in this frame, confirming that a steady state has been achieved. In the
high-altitude region, the third term (viscous damping) is seen to dominate over all
other terms. It is matched by significant negative contributions from the fourth
term, which represents diffusion of this heat back into the bulk of the vibrated bed,
and from the sixth term, representing grain—wall dissipation. We consider this point
further in §6.

The velocity of the centre of mass of the bed was calculated for each of the 12
frames. Over the first six frames, the variation of this velocity with time was
close to linear with a gradient of —9.68 m s~ 2, indicating that over this period
the bed is essentially in free fall. Thus, for approximately half the cycle (approx.
11 ms), one has in effect a ‘microgravity’ experiment. Although of shorter
duration than traditional microgravity experiments in aircraft following
parabolic trajectories (Louge et al. 2001; Leconte et al. 2006), the ability to
probe the interior of a three-dimensional bed may allow a ground-based facility
of this type to offer a useful alternative for investigations of short-timescale
phenomena in freely cooling granular gases.

The time-averaged experimental temperature distribution in figure 9 is
comparable to previous time-averaged results from techniques such as PEPT and
high-speed photography (Warr et al. 1995; Wildman et al. 2001b): a rapid
decrease in temperature as one leaves the base, down to a plateau region, with a
hint of a temperature upturn at higher altitudes. In the simulation results, a
more marked upturn in temperature is visible over the range z'=5-8. We
consider further the issue of the temperature upturn in §6. In the remainder of
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this section, we discuss the observation that significant differences are apparent
in figures 6-9 between the experimental and numerical results for 2" values above
approximately 5-6.

As pointed out by Martin et al. (2005), at sufficiently high altitude the packing
fraction drops to a level at which the hydrodynamic description is no longer
applicable. Two possible critical packing fractions were proposed to predict the
onset of the Knudsen regime. The first, n,, occurs when the mean time between
collisions is large enough for gravity to completely arrest the mean particles’
vertical motion; and the second, 7., occurs when the mean time between
collisions exceeds the mean time required to cross a horizontal distance equal to
the radius of the vessel. These relationships are

T
24T

Ny (5.3)

and

VA d
24 R
Inserting values of 7"=0.8 (taken from figure 9), and the cell geometry
parameters, gives the values 1,=0.092 and 7,=0.017. The corresponding
heights, estimated from the experimental time-averaged packing fraction
distributions, are 2"=6.2 and 7.9, respectively. The divergence between
experimental and numerical results above z2*=6 can therefore be interpreted as
being due to the non-applicability of the hydrodynamic equations in this region.

m (5.4)

6. New mechanism for temperature upturn

The dramatic upturn in time-averaged temperature predicted by the model
(figure 9a) raises interesting questions. The fact that the model is one-
dimensional means that convection cannot be responsible for the upturn.
Furthermore, no term proportional to concentration gradient appears in the heat
flux expression, and therefore this oft-cited reason for the upturn is also not
applicable in this case. One possible explanation is that the result is an artefact
arising from the use of constitutive equations outside their range of applicability
(i.e. a coefficient of restitution insufficiently close to 1). To test this possibility,
we repeated the simulation for the close-to-elastic case e=0.94 (with the same
base velocity and a cell height of 12d). The resulting time-averaged temperature
distribution shown in figure 9b still demonstrates a significant temperature
upturn. We discuss here in semi-quantitative terms the alternative physical
mechanism, outlined in §5, which is based on the transport of kinetic energy
through the transmission of acoustic waves.

For simplicity, only variations along the z-axis will be considered. We also
restrict our attention to the dilute upper region of the cell, within which the time-
averaged mass density p(z) is well approximated by a Boltzmann distribution for
reasonably elastic collisions (Wildman et al. 2000)

p = po exp(—gz/T.), (6.1)
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where p, is a constant. The final approximation is that, within this region, the
temperature variations are sufficiently small that the wave speed ¢ (equation
(5.1)) can be regarded as independent of 2.

The admittance of the cell, Y(z), defined by

Yy =2, (6.2)

where A is the cross-sectional area, then takes the form
Y =Y, exp(az), (6.3)

where =g/ T, and Yy= Y(0). The propagation of longitudinal waves in such a
system is mathematically equivalent to the case of the loudspeaker horn with
exponentially increasing area, for which solutions to the wave equation are well
known (Lighthill 1978). The excess pressure, p., and fluid velocity, u, vary with
distance z along the horn as follows for a sinusoidal wave of angular frequency w

1 ,\Y* 1
Do = Py €XP !iwt—i(wQCQ — Zof) z— 50(2] (6.4)
and
2.2\ 1/2
De ca L[ co
w=2 Y(2) (1 — 4w2> —1(%)] , (6.5)

where py=p.(0). Equations (6.4) and (6.5) show that sound waves can propagate
into the ‘isothermal atmosphere’ region of the granular gas only if

1
w>§ac. (6.6)

Provided equation (6.6) is satisfied, p. decreases as pgyexp(—az/2), and u
increases as ugexp(az/2), where uo=wu(0). In practice, the disturbance
propagating into the high-altitude region of the cell comprises a wide range of
frequencies, some of which are reflected since they do not satisfy equation (6.6),
and the rest of which have frequency-dependent phase velocities. The situation is
further complicated by the existence of significant nonlinear effects (Bougie et al.
2002). Nevertheless, in both experimental and numerical cases, amplification of
the fluid velocity with increasing height occurs as predicted by this analysis
within the region governed by equation (6.1). This is demonstrated graphically in
figure 11, in which the time-varying mean velocity distributions from figure 7
(equivalent to u*, the non-dimensional form of the fluid velocity u) have been
differentiated numerically and then time-averaged to calculate the cycle-
averaged term (du*/dz*)%. We focused on the derivative rather than on u* itself,
since by equation (5.2) it is this term that dictates the rate of damping of the
longitudinal sound wave. In each case, a centre difference formula was used, with
a step length of 6z and 26z for the numerical and experimental data, respectively.
The overestimation of damping by the simulations suggests that the
experimental upturn will be less extreme than that predicted by the simulations,
in agreement with the results shown in figure 9a.
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Figure 11. Time-averaged experimental and numerical heat generation term (du*/dz*)2.

In the low-density limit, the term A+ 4u,/3 is dominated by the shear
viscosity, the limiting form of which is (Jenkins 1999)

5 mTY2

Ms = 16772 &2 (6.7)
and is therefore independent of z in the 1sothermal approximation. This fact,

combined with the height variation of (du /dz*)? in figure 11, shows that the source
term g (0u/0z)*from equation (5.2) increases with helght above 2 values of
approximately 5, a result that is consistent with the ‘Term 3’ curve in figure 10.

The d1851pat10n rate of kinetic energy in the low- densrcy limit is controlled by
the grain-wall dissipation rate, v, which scales as p T%/* (appendix (A 7)). If T'is
indeed constant, then, as z increases, 7y, decreases due to the exponentially
decaying density p. Furthermore, a constant T would imply that the fourth term
(diffusion of heat) is zero. However, in the steady state, the source and sink terms
must balance when averaged over a complete cycle. This can be achieved,
therefore, only if the average granular temperature increases with z, either (i) to
increase v, or (ii) to set up a positive temperature gradient, thereby allowing a
heat flux back into the bed.

In conclusion, we have shown that the u(d7/0z) term in the heat flux
expression (equation (1.1)) is not necessary to explain a temperature inversion in
a vibrofluidized bed, if the flow is time dependent. Equally, however, we cannot
rule out the u(dn/0z) term as playing a contributory or indeed sole role to the
inversion in certain cases. Previously published simulations (Soto et al. 1999;
Brey et al. 2001; Ramirez & Soto 2003) have demonstrated density-driven heat
currents in time-independent situations where there is no possibility of sound or
shock-wave heating. Although the discussion in this section has related primarily
to a phenomenon specific to vibrofluidized granular beds, a more general
conclusion can be drawn, namely that the possibility of volume heating should be
considered when modelling time-varying, rapid granular flows containing
regions, such as free surfaces, with strong spatial variations in particle density.
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7. Conclusions

A novel NMR technique has been developed for measuring the time-resolved one-
dimensional granular temperature, fluid velocity and packing fraction distri-
bution within a vibrated granular bed. The velocity profile sequence offers the
advantage over a single-spin or stimulated-echo velocity profile sequence of
refocusing magnetization dephasing due to constant motion in a linear
background gradient. Using this technique, we observed strong cyclic variations
in the granular temperature and fluid velocity distributions. A one-dimensional
hydrodynamic model reproduced in qualitative terms many of the key features
observed experimentally. A localized heating wave travelling through the bulk of
the material was associated with viscous damping of a longitudinal sound wave
and provided the basis for an alternative explanation of the temperature upturn
sometimes observed in vibrofluidized granular beds.
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Appendix A

The simulation solves the following one-dimensional granular continuum
equations derived by Jenkins & Richman (1985a,b):

op 0
= Al
2t = ;P (A1)
ou ou 1 0u ou
=yt | = 2uy) — | —g— 44,7 f* cos(2 A2
=gt o | G ) 5 —o— A cosant) (A2
and
OT _ BT (2\[_ du (4 (8P, 0 (TN
ot "oz 3p P, I ACE 0z \ 0z LA

(A 3)

where p is the density; u is the z-component of the velocity field; T is the granular
temperature; Ay is the amplitude of oscillation; fis the frequency of oscillation; and
tis time. Although this equation is one-dimensional, it represents an average of the
three-dimensional equations over the non-vertical directions, and we use three-
dimensional transport coefficients and equation of state. The pressure p is

p=pT[l+2(1+e)G], (A 4)

where G = ng(n, d) is related to the value of the radial distribution function g(n, r)
evaluated at contact r=d, n= mpd> /6m is the volume fraction and m is the mass
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of a particle. We use Torquato’s expression (1995)
(2—m)
2(1—n)°
5.6916(0.64 —0.49)
0.64—n

7n<0.49

9(n, D) = (A5)

n=>0.49

for the radial distribution at contact. The energy loss rates are
12(1—¢€%)
/'Y = —

NG pT*2 @G (A 6)

and

B 3
=2,T A7
T =P T, (A7)

where 7, is the energy loss rate due to the vertical walls. Equation (A 7) was
derived from the Richman boundary condition for the case of smooth walls with a
zero component of velocity in the direction normal to the wall (Richman 1993).
The constant ( is dependent on the grain—wall coefficient of restitution and the
radial distribution function due to the presence of the wall. For the results
presented here, we chose § to take the value 4.67 for the e=0.68 simulations, and 0
for the case e=0.94.
The bulk viscosity is

_ 8pdvnT a

A A8
e (A8)
the shear viscosity is
pdvaT | 5 4 12
, = 14— (1+2 A
s 6 [16G+ +5< +7T>G:| (A9)
and the thermal conductivity is
15pdvwT [ 5 6 32
= 1+-11+— . Al
* 16 [2404r +5< +97r> G] (4 10)

The equations are solved in the frame of the shaking box, so that the boundary
conditions are time independent. This results in a pseudo-force (the last term in
equation (A 2)). The top of the cell is positioned to be high enough that the fluid
does not significantly interact with it, but not so far away that the density
decreases to the point that the numerical method fails. Denoting the height of the
cell by L, the values L=8d and 12d were chosen for the e=0.68 and 0.94 cases,
respectively. The boundary conditions at the top are

u(L,t) =0 (A 11)
and
0T(z,t)
_— =0. A 12
x|, " (A12)

Equation (A 12) ensures that no energy can leave the cell through the upper
boundary. This is due to the fact that in the experiment the top of the container
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is so high that the fluid never interacts with it. In the simulation, the top is lower
to avoid the density getting too low, but nevertheless high enough for the energy
flux to be neglected. At the bottom of the container we use

u(0,0) =0  Fy,>0

dul s ¢ (A 13)
8| _o g<o
0z 2=0

for the velocity boundary condition, where F}, is the normal force exerted by the wall
to maintain u(0, t) = 0. Since there is no attractive force between the particles and
the wall, the wall can only push on the particles and cannot pull. We therefore
impose u(0, t) = 0, then calculate the wall force Fy,. If F},>0 (i.e. pushing), then we
keep u(0,t)=0. If F;,<0 (i.e. pulling), then we use du(z, t)/0z|,—o =0, which
corresponds to no normal force or free boundary conditions. A detailed study of this
boundary condition, including direct comparisons with experiments, has been
performed (Shattuck in press). We use a modification of boundary conditions for a
smooth boundary found in Jenkins & Louge (1997)

0T(z,t) pV/3T

0z |,= K

o. (A 14)

Although Jenkins & Louge (1997) derived a value for « based on wall friction and
dissipation, we set it to 1.26 to produce temperature slopes similar to those in the
experiment.

As the density of a gas becomes so dilute that the mean free path is
comparable to the size of the container, the transport equations must be
modified. We define a transport cut-off at a density of

1 -3
-~ —589%x107°, A 15
Mo GQO\/§ ( )

where £, = 20 is the dimensionless cut-off mean free path. At lower densities than
this, the viscosity and thermal conductivity are multiplied by the factor

_ 7
X

R

(A 16)

For n>>n,, x is close to unity, but as the density decreases the transport
coefficients go smoothly to zero. This ad hoc factor is used only to prevent the
code from diverging at extremely low densities. In these simulations, we have
varied £y from 10 to 100 and the results are almost the same except for slight
deviations in the very-low-density regions. In particular, the temperature upturn
is unaffected. We have also lowered the top plate so that the density is never
below the cut-off. This also produces almost identical results except near the top
plate, where there is a small density upturn as the top plate moves downward. To
further test the robustness of the temperature upturn, we have changed the
values of the transport coefficients by a factor of 3 and 1/3. This changes the
mean levels of the curves, but the temperature upturn is still present.
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