Prof. Mark D Shattuck
Physics 35100 Mechanics
September 8, 2022

Problem Set 1

Question 1. A 3D Cartesian vector space over the real numbers \mathbb{R} has the following properties:

1) An arbitrary vector $\vec{u}=a \hat{x}+b \hat{y}+c \hat{z}$, where a, b, and c are real numbers, and $\hat{x}, \hat{y}, \hat{z}$ are basis vectors.
2) $\vec{u}+\vec{v}+\vec{w}=(\vec{u}+\vec{v})+\vec{w}=\vec{u}+(\vec{v}+\vec{w})$
3) $\vec{u}+\vec{v}=\vec{v}+\vec{u}$
4) $\vec{u}+(-\vec{u})=\overrightarrow{0}$
5) $a(b \vec{u})=(a b) \vec{u}$
6) $a(\vec{u}+\vec{v})=a \vec{u}+a \vec{v}$
7) $(a+b) \vec{u}=a \vec{u}+b \vec{u}$
8) Dot product: $\vec{u} \cdot \vec{v}=\vec{v} \cdot \vec{u}=a$

$$
\begin{aligned}
& \hat{x} \cdot \hat{x}=1, \\
& \hat{x} \cdot \hat{y}=0, \\
& \hat{x} \cdot \hat{z}=0, \\
& \hat{y} \cdot \hat{x}=0, \\
& \hat{y} \cdot \hat{y}=1, \\
& \hat{y} \cdot \hat{z}=0, \\
& \hat{z} \cdot \hat{x}=0, \\
& \hat{z} \cdot \hat{y}=0, \\
& \hat{z} \cdot \hat{z}=1,
\end{aligned}
$$

Or as a matrix:

$$
\left[\begin{array}{l}
\hat{x} \\
\hat{y} \\
\hat{z}
\end{array}\right] \cdot\left[\begin{array}{lll}
\hat{x} & \hat{y} & \hat{z}
\end{array}\right]=\left[\begin{array}{lll}
\hat{x} \cdot \hat{x} & \hat{x} \cdot \hat{y} & \hat{x} \cdot \hat{z} \\
\hat{y} \cdot \hat{x} & \hat{y} \cdot \hat{y} & \hat{y} \cdot \hat{z} \\
\hat{z} \cdot \hat{x} & \hat{z} \cdot \hat{y} & \hat{z} \cdot \hat{z}
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\mathbb{I}
$$

9) Cross product: $\vec{u} \times \vec{v}=-\vec{v} \times \vec{u}=\vec{w}$

$$
\begin{aligned}
& \hat{x} \times \hat{x}=0, \\
& \hat{x} \times \hat{y}=\hat{z}, \\
& \hat{x} \times \hat{z}=-\hat{y}, \\
& \hat{y} \times \hat{x}=-\hat{z}, \\
& \hat{y} \times \hat{y}=0, \\
& \hat{y} \times \hat{z}=\hat{x}, \\
& \hat{z} \times \hat{x}=\hat{y}, \\
& \hat{z} \times \hat{y}=-\hat{x}, \\
& \hat{z} \times \hat{z}=0,
\end{aligned}
$$

Or as a matrix:

$$
\left[\begin{array}{l}
\hat{x} \\
\hat{y} \\
\hat{z}
\end{array}\right] \times\left[\begin{array}{lll}
\hat{x} & \hat{y} & \hat{z}
\end{array}\right]=\left[\begin{array}{ccc}
\hat{x} \times \hat{x} & \hat{x} \times \hat{y} & \hat{x} \times \hat{z} \\
\hat{y} \times \hat{x} & \hat{y} \times \hat{y} & \hat{y} \times \hat{z} \\
\hat{z} \times \hat{x} & \hat{z} \times \hat{y} & \hat{z} \times \hat{z}
\end{array}\right]=\left[\begin{array}{ccc}
\hat{0} & \hat{z} & \hat{-y} \\
\hat{-z} & \hat{0} & \hat{x} \\
\hat{y} & \hat{-x} & \hat{0}
\end{array}\right]
$$

10) $(\vec{u}+\vec{v}) \cdot \vec{w}=\vec{u} \cdot \vec{w}+\vec{v} \cdot \vec{w}$
11) $(\vec{u}+\vec{v}) \times \vec{w}=\vec{u} \times \vec{w}+\vec{v} \times \vec{w}$

It is common to describe a vector in a simple form for easy calculatons: Definition: $\vec{u} \equiv(a, b, c)=$ $a \hat{x}+b \hat{y}+c \hat{z}$, where the basis vectors are assumed. Derive the following vector operations in this form and justify each step using the properties above. For example,

1) $\vec{u}+\vec{v}=(a, b, c)+(d, e, f)=?$

By definition:

$$
(a, b, c)+(d, e, f)=a \hat{x}+b \hat{y}+c \hat{z}+d \hat{x}+e \hat{y}+f \hat{z}
$$

By Property 2 and 3:

$$
=(a \hat{x}+d \hat{x})+(b \hat{y}+e \hat{y})+(c \hat{z}+f \hat{z})
$$

By Property 7:

$$
=(a+d) \hat{x}+(b+e) \hat{y}+(c+f) \hat{z}
$$

By definition:

$$
(a, b, c)+(d, e, f)=(a+d, b+e, c+f)
$$

2) $a \vec{u}=a(b, c, d)=$?
3) $\vec{u} \cdot \vec{v}=(a, b, c) \cdot(d, e, f)=$?
4) $\vec{u} \times \vec{v}=(a, b, c) \times(d, e, f)=$?

Question 2. Given $\vec{u}=(1,3,5), \vec{v}=(-3,2,4), \vec{w}=(-1,0,-2)$ using the notation developed above, find:

1) $5 \vec{u}+3 \vec{v}$
2) $(\vec{u} \cdot \vec{v}) \vec{w}$
3) $\vec{u} \times(\vec{v} \times \vec{w})$
4) $(\vec{u} \cdot \vec{w}) \vec{v}-(\vec{u} \cdot \vec{v}) \vec{w}$

Question 3. If $\vec{u} \cdot \vec{u}=169$ and $\vec{u} \times \hat{x}=-5 \hat{y}$, then what is \vec{u} ?
Question 4. Any triangle can be represented by three vectors $\vec{u}, \vec{v}, \vec{w}$.

1) Make a sketch of an example triangle with the tails of \vec{u} and \vec{v} at the same point and \vec{w} pointing from the head of \vec{v} to \vec{u}.
2) Find an equation for \vec{w} in terms of \vec{u} and \vec{v}.
3) Use the equation to find a relationship between the squared lengths of $\vec{u}, \vec{v}, \vec{w}$, where the squared length of a vector is $u^{2}=|\vec{u}|^{2}=\vec{u} \cdot \vec{u}$. Use the relation between the dot product and angle between two vectors to recover the Law of Cosines.
4) Show that the area of the triangle $A=|\vec{u} \times \vec{v}| / 2$. Prove the other cross products give the same result $A=|\vec{u} \times \vec{w}| / 2=|\vec{w} \times \vec{v}| / 2$.

Question 5. A simple vector space is given by triples (a, b, c) where a, b, c come from the scalar field $\{0,1,2\}$, where the addition and multiplication tables for the field are:

+	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

$*$	0	1	2
0	0	0	0
1	0	1	2
2	0	2	0

For example, add two vectors $(2,1,0)+(1,2,2)=(0,0,2)$ and multiply a vector by a scalar $2 *(1,2,0)=$ $(2,1,0)$.

1) List all 27 possible vectors in this space.
2) Show that $\vec{e}_{0}=(1,0,0), \vec{e}_{1}=(2,1,0)$, and $\vec{e}_{2}=(0,2,1)$ are basis vectors that span the space.
3) What is the additive inverse for these vectors? That is find a scalar d such that $(a, b, c)+d *(a, b, c)=$ $(0,0,0)$. Often d would be -1 , but -1 is not one of the scalar $0,1,2$ available.

Question 6. A roller coaster follows the trajectory:

$$
\vec{x}(t)=\left(v t, 0, v^{2} t^{2}(v t-10 m)(v t-18 m) / 1260 m^{3}\right)
$$

(using the notation from question 1), for $(-5 s \leq t \leq 20 s)$, and $v=1 \mathrm{~m} / \mathrm{s}$.

1) If the height $h(t)=\vec{x}(t) \cdot \hat{z}$, then when (t) and where (x, y, h) does the coaster reach the maximum and minimum heights for $(-5 s \leq t \leq 20 s)$?
2) What is the velocity vector at $t=-5$, the maximum, and minimum heights?
3) What is the acceleration vector at $t=-5 \mathrm{~s}$, the maximum and minimum heights?
4) Is the total energy, kinetic plus gravitational, conserved?

Question 7. A 10 kg model rocket produces an upward thrust of $49 \mathrm{~N} / \mathrm{s}^{2}(3 \mathrm{~s}-t) t$ for 3 s . At $t=0 \mathrm{~s}$ the rocket is sitting at rest on the launch pad. Assume $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ and that the mass of the fuel is negligible:

1) Draw a free body diagram of the rocket and pad at $t=0$?
2) At what time $t_{\text {off }}$ will the rocket leave the launch pad?
3) Write down a differential equation for the position of the rocket as a function of time $\vec{x}(t)$ for $0 \leq t<t_{\text {off }}$.
4) Draw a free body diagram at $t=t_{o f f}$.
5) Write down a differential equation for $\vec{x}(t)$ for $t_{o f f} \leq t<3 s$ and solve for $\vec{x}(t)$. What is the height of the rocket at $t=3 s$?
6) What is the velocity at $t=3 s$?
7) Use conservation of energy to find the maximum height that rocket reaches. For what times can we use conservation of energy?
