Prof. Mark D Shattuck
Physics 35100 Mechanics
October 31, 2022

Exam 1-retake

Show all of your work!

Question 1. What is your name?
Question 2. Driven Oscillator A block of mass m is resting on a friction-less table and connected to a movable wall by a linear spring with spring constant K and rest length L so that force is zero if $x-P(t)=L$. It is confined to move in one dimension. Initially the mass is not moving and positioned so the spring is at its rest length. The wall's position P oscillates according to $P(t)=P_{0} \sin (\omega t)$.

(1) In terms of the position x, what is the equation of motion.
(2) Consider the mass-spring system:
(a) What is the kinetic, potential, and total energy at $t=0$?
(b) Is total energy conserved? Why? Why not?
(c) Is momentum conserved? Why? Why not?
(3) Non-dimensionalize the equation using $[L]=L,[M]=m$, and $[T]=\frac{1}{\omega_{0}}$, where $\omega_{0}=\sqrt{\frac{K}{m}}$ to obtain an equation of motion of the form:

$$
\ddot{u}=-u+A_{0} \sin (\Omega \tau),
$$

where $\tau=\omega_{0} t$ and $u=\frac{x-L}{L}$. Find the values of A_{0} and Ω.
(4) Show that:

$$
u(\tau)=A \sin (\tau)+B \sin (\Omega \tau)
$$

solves the equation:

$$
\ddot{u}=-u+A_{0} \sin (\Omega \tau),
$$

Find the values of A and B for the conditions above.
(5) Find the impulse J over 1 period of the drive $0 \leq t \leq 2 \pi / \omega$?

Question 3. Roller coaster A car of mass M rides on a friction-less three-dimensional track. The track has a circular footprint of radius R such that the x and y coordinates form a circle $x^{2}+y^{2}=R^{2}$ in the plane of the ground. The height z of the track varies with the angle θ around the $\operatorname{circle} z(\theta)=H(1-\cos \theta)$.

(1) Find the Lagrangian in terms of θ and $\dot{\theta}$.
(2) Find the generalized momentum p_{θ}.
(3) Find the equation of motion.
(4) Find the Hamiltonian H as a function of $\dot{\theta}$ and θ. Then express it in terms of p_{θ} and θ by eliminating $\dot{\theta}$. Is p_{θ} or H conserved? Why or Why not?

Question 4. Hamilton's Equations of Motion The Hamiltonian $H\left(q_{k}, p_{k}, t\right)$ is a function of K generalized coordinates q_{k}, K generalized momenta,

$$
p_{k}=\frac{\partial L}{\partial \dot{q}_{k}},
$$

and time t, where L is the Lagrangian. The Lagrangian $L\left(q_{k}, \dot{q}_{k}, t\right)$ is a function of K generalized coordinates q_{k}, K generalized velocities \dot{q}_{k}, and time t. The Hamiltonian is related to the Lagrangian by this transformation:

$$
H\left(q_{k}, p_{k}, t\right)=\sum_{k=1}^{K} p_{k} \dot{q}_{k}-L\left(q_{k}, \dot{q}_{k}, t\right)
$$

The total differential $d F$ of any function $F(x, . ., z)$ is

$$
d F=\frac{\partial F}{\partial x} d x+\ldots+\frac{\partial F}{\partial z} d z
$$

Find the total differential of the transformation equation and use the Euler-Lagrange equations and definition of p_{k} to show that:

$$
\dot{p}_{k}=-\frac{\partial H}{\partial q_{k}}, \quad \quad \dot{q}_{k}=\frac{\partial H}{\partial p_{k}}, \quad \frac{\partial H}{\partial t}=-\frac{\partial L}{\partial t} .
$$

These are a set of first order differential equations of motion called Hamilton's equations. (Hint: If differentials like $d x, d y$, etc are independent so if $A d x+B d y+\ldots+C d z=0$, then $A=0$ and $B=0$, etc.)

Question 5. Time dependent Motion. A particle of mass $m=3 \mathrm{~kg}$ is initially $t=0 \mathrm{~s}$ at position $\vec{x}(0)=(-2,0,3) m$. The particle has a velocity

$$
\dot{\vec{x}}(t)=(\exp (-t / 3),-t,-2 \cos t) \mathrm{m} / \mathrm{s}
$$

(1) Find a general expression for the position of the particle $\vec{x}(t)$ and the acceleration $\ddot{x}(t)$ as functions of time t.
(2) What time t is the $\hat{z}=(0,0,1)$ component of the acceleration $a_{z}=\ddot{\vec{x}} \cdot \hat{z}$ maximum in the range of $0 s \leq t \leq 6 s$? What is the position vector at that point?

Question 6. Springy blocks on a wedge Two blocks of mass m_{1} and m_{2} are connected together by a massless linear spring with spring constant K and sit on a friction-less wedge with angle θ. When $x_{2}-x_{1}=L$ the spring produces no force. The wedge can not move. The blocks are free to move under the force of gravity pointing downward.

(1) Find the accelerations of the blocks \ddot{x}_{1} and \ddot{x}_{2}. Note any conserved quantities.
(2) Find the acceleration of the center of mass of the blocks $\ddot{X}_{c m}$ and the acceleration of generalized coordinate that measures the distance between the blocks $\ddot{u}=\ddot{x}_{2}-\ddot{x}_{1}$.

