Prof. Mark D Shattuck Physics 35100 Mechanics November 17, 2022

Problem Set 3

Question 1. Double Oscillator Two blocks of mass $m_1 = 3m$ and $m_2 = 2m$ are on a friction-less table. m_1 is connected to a linear spring with spring constant $K_1 = 3K$ and m_2 is connected to a second linear spring with spring constant $K_2 = K$. Both masses are confined to move in one dimension. The masses are initial at rest at their equilibrium positions. x_1 and x_2 measure their displacement from the equilibrium positions.

- (1) What is the Kinetic Energy of the system in terms of x_1 and x_2 .
- (2) What is the Potential Energy of the system in terms of x_1 and x_2 .
- (3) Show that the potential energy of the system is 2K when $x_1 = 1$ and $x_2 = 0$. In this configuration, describe the state of the 3K and K springs as stretched, compressed, or at equilibrium.
- (4) Find the equations of motion for the system.
- (5) Express the equations of motion for the system as a matrix equation of the form $M\ddot{X} = -KX$, where M and K are 2 × 2 matrices and X is a 2 × 1 matrix.
- (6) Show that $X(t) = A\cos(\omega t + \phi)$, where A is a 2×1 matrix, is a solution to the equation $M\ddot{X} = -KX$. What are the conditions on A, ω , and ϕ so that $X(t) = A\cos(\omega t + \phi)$ is a solution?
- (7) Find the values of ω which satisfy det(K ω^2 M) = 0 or det(M⁻¹K ω^2 I) = 0 for the K and M found above, and I is the identity matrix.
- (8) For each value of ω find an A which satisfies $(\mathsf{K} \omega^2 \mathsf{M})\mathsf{A} = 0$, or $\mathsf{K}\mathsf{A} = \omega^2 \mathsf{M}\mathsf{A}$, or $\mathsf{M}^{-1}\mathsf{K}\mathsf{A} = \omega^2 \mathsf{A}$.
- (9) Using the A's and ω 's from above:
 - (a) Find the general solution for X(t).
 - (b) Show that in matrix form it can be expressed as:

$$\mathsf{X}(t) = \begin{bmatrix} -2 & 1\\ 1 & 3 \end{bmatrix} \begin{bmatrix} C_1 \cos\left(\sqrt{\frac{3}{2}}\omega_0 t + \phi_1\right)\\ C_2 \cos\left(\sqrt{\frac{1}{3}}\omega_0 t + \phi_2\right) \end{bmatrix}$$

where C_1 and C_2 are constants.

(c) Show that it is a solution to the equations of motion.(10) Show that the change of variables:

$$\mathbf{Y}(t) = \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ 1 & 3 \end{bmatrix}^{-1} \mathbf{X}(t)$$

decouples the solution so that $y_1(t)$ and $y_2(t)$ oscillate independently, each with their own frequency and phase. Describe the motion when $C_1 = 1$ and $C_2 = 0$ and when $C_1 = 0$ and $C_2 = 1$. (11) Find C_1 and C_2 for the initial condition of $\mathsf{X} = \begin{bmatrix} 0\\1 \end{bmatrix}$ and $\dot{\mathsf{X}} = \begin{bmatrix} 0\\0 \end{bmatrix}$. Explain in words what this initial condition represents.

Question 2. Weak vs. Strong coupling Two blocks of mass m are connected by springs as shown. The middle spring has a spring constant K and the springs connected to the walls have the same spring constant k.

- (1) What are the normal modes and normal frequencies for this system?
- (2) Describe the normal modes for three cases:
 - (a) K >> k.
 - (b) K = k.
 - (c) K << k.

Question 3. Oscillating pendulum A simple pendulum of mass M and length l is hanging from a block with mass m that can oscillate at the end of a spring with spring constant k connected to a wall as shown.

- (1) Find the Lagrangian $L(x, \theta, \dot{x}, \dot{\theta})$ under the assumption that the angle θ is small, so that $\sin \theta \simeq \theta$ and $\cos \theta \simeq 1 - \theta^2/2$. and only retain quadratic terms in $x, \theta, \dot{x}, \dot{\theta}$. (e.g., $x\theta$ is ok, but $x\theta\dot{\theta}$ is too small. and can be ignored.)
- (2) Find the normal modes and corresponding frequencies for the case m = M = l = g = 1 and k = k.
- (3) Describe the normal modes for three cases:
 - (a) k >> 1.
 - (b) $k \sim 1$.
 - (c) k << 1.