
Prof. Mark D Shattuck
Physics 39907 Computational Physics
September 23, 2023

Problem Set 3

Question 1. 2D Volume Fraction: Create a new MATLAB script based on the MATLAB Molecular
Dynamics Simulator md010.m found in zip file mdIntro.zip. In this new script, add code to measure the
2D volume fraction of the simulation container. The volume fraction is the ratio of the total volume of the
particles to the volume of the container. The 2D volume fraction (also called area fraction) ϕ is the ratio
of the total area of the particles to the area of the container.
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where An is the area of the n-th particle, AC is the area of the container, Dn is the diameter of the n-th
disk (particle), and Lx and Ly are the side lengths of a rectangular container.

(1) Show that for N=80 mono-disperse (all same-sized) disks of diameter D=2 in a 9D×11D rectangular
container (Lx=9*D; Ly=11*D;) the area fraction is

20π

99 = 80π

396 ≃ 0.6347.

(2) Does the area fraction change during the simulation? Why? or Why not?
(3) What is the largest area fraction that we can achieve using the square packing initial condition

code from md010.m:

1 %% Initial Conditions
2 [x y]=ndgrid(D/2:D:Lx−D/2,D/2:D:Ly−D/2);
3 ii=randperm(numel(x),N);
4 x=x(ii(1:N));
5 y=y(ii(1:N));

(4) Does the maximum realizable area fraction in (3) depend on the box shape or size? Why? or Why
not?

(5) For a theoretical infinite system with hexagonal packing, what is the maximum packing fraction?
Is there a way to obtain this packing fraction in a finite simulation?

(6) Include the new code (with comments) in the zip file you turn in.
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https://gibbs.ccny.cuny.edu/teaching/current/Files/mdIntro.zip


2

Question 2. NVE Ensemble: The molecular dynamics code we developed in class and above is an example
of a constant (N)umber, (V)olume, (E)nergy or ”NVE ensemble” simulation. Each of these quantities is
supposed to be conserved (unchanged) by the simulation. The number of particles N is clearly constant in
the simulation. The 2D volume or area A is determine from the values of Lx and Ly, which are also fixed.
So the area of the box is fixed. While Lx and Ly are fixed the area that the particles can explore actually
depends on the overlap of the particle with the wall. We will ignore that for this problem. Newton’s Laws
conserve energy E so the energy should be fixed. However, we are not solving Newton’s Laws exactly. Lets
explore how well we the energy is conserved.

(1) Add a new %% Experimental parameter to the script from Question 1 to set the initial total
energy E=2;. Consider the values of the initial potential and kinetic energies separately. The
potential energy depends on the overlaps of the particles with each other and the walls. How big
are the overlaps at the beginning of the simulation. The kinetic energy is

K = 1
2M

N∑
n=1

v2
n,

where v2
n is the square of the speed of particle n and

v2 = v2
x + v2

y.

For the velocity initial conditions set the values of

1 vx=randn(1,N);
2 vy=randn(1,N);
3 % code to determin v0
4 v0=???;
5 vx=v0*vx;
6 vy=v0*vy;

such the v0 is chosen so that the total initial energy is E.
(2) Run the new simulation using

1 %% Experimental Parmeters
2 N=80; % number of particles
3 D=2; % diameter of particles
4 K=100; % spring constant for harmonic force law
5 M=3; % mass of particles
6
7 E=2; % Total Energy
8
9 Lx=9*D; % size of box

10 Ly=11*D;
11
12 TT=1000; % total simulation time

and plot the total potential energy U (particle-particle and particle-wall), the total kinetic energy
K, and the total energy E = U + K as a function of simulation time from 0–1000. The result
should look like the (left) panel of figure 1. The total time of the simulation should be less than 1
minute. To time the simulation you can use: tic;md011;toc;.

(3) Make a second plot of just the total energy. Is the total energy conserved? How well is it conserved?
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Figure 1. Plot of potential (green), kinetic (blue), total (red) energy as a function of simulation
time for a 9D × 11D system of 80 disks of diameter D = 2. The (Left) panel shows all simulation
times, and the (right) panel shows early times.

(4) Run the code 5 times with different values of dt from this list dts=[.05 .02 .01 .003 .001];.
Plot the std of the total energy over time as a function of dt on a log-log plot. What is the slope
of this curve? Explain the slope. Some of these simulation may take a few minutes. A dt=.01; is
a good compromise between energy conservation and simulation time.
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Question 3. Poly-dispersity: Poly-disperse is a term used to describe systems with particles that have
different sizes. Mono-disperse and Bi-disperse are also common to describe systems with 1 (mono-) or
2 (bi-) sizes. Modify the code to allow each particle to have its own diameter. As a starting point use:
Dn=D*(1+0.1*randn(1,N)); This represents an average diameter of D and poly-dispersity of 10% (0.1D).
You may also want to decrease the simulation time (TT=100;) while you are testing the code.

(1) Begin by adding the definition of Dn to the %% Experimental Parameters section.
(2) Next look through the code for places D is used and replace with equivalent versions using Dn. For

example:
(a) Calculation of area fraction: phi=pi*N*Dˆ2/4/Lx/Ly;. N*Dˆ2 is replace by sum(Dn.ˆ2).

Show that this reduces to N*D, if Dn=D*ones(1,N).
(b) Initial Conditions: [x y]=ndgrid(D/2:D:Lx−D/2,D/2:D:Ly−D/2); Here there are a few

options, but for this code use the maximum of Dn, Dmax, in place of D. You may want to put
the calculation of Dmax in the %% Experimental Parameters section of the code so that it
is available in most of the code. Make sure you calculate Dmax without a for loop. With this
solution the code will not accommodate as many particles. Approximately 55 particles will fit
in a 9D × 11D container.

(c) Plotting: ...'Position',[x(np)−.5*D y(np)−.5*D D D]... you will need to replace D
with the value of Dn for particle np.

(d) Force Law: Here D must be replaced by the sum of the radii of the interacting pair Dnm. The
same is true for the particle-particle potential energy Ep.

(e) Wall Forces: For each wall force:

1 ii=x<D/2; % list of overlaping particles
2 dw=x(ii)−D/2; % Left wall overlap size

D appears in making the list of overlaps and in calculating the size of the overlap.
(f) Search the code for D to make sure you have found all uses of D.

(3) When the code is working it should still conserve energy. This is a good way to check that you
have done it correctly.

(4) It would be unusual to have particles with different diameters but the same mass. Change the code
to allow different masses for each particle, as we did in class. A good choice for the masses is to
use a constant mass per unit area (areal density rho=1;). Then the M=rho*pi*Dn.ˆ2/4. After
the change make sure that energy is conserved, and the value of the total energy is still E.

(5) Include this code in the zip file you submit.
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Question 4. Ideal Gas Law: Use the code from Question 3 to check the ideal gas law. The ideal gas law
is usually expressed as:

PV = NRT.

The pressure times the volume is equal to the number of particles times a constant times the temperature.
From the simulation we know the number of particles N and the 2D volume or area Lx*Ly. The remaining
terms need some discussion:

R: The ideal gas constant R is really a units conversion for the temperature as measured in Kelvin to
the temperature as measured in Joules. So we can eliminate it from the equation if we measure
temperature in the right units.

T : In the kinetic theory derivation of this equation the temperature is average kinetic energy of the
system per particle. Therefore,

T =
〈

1
N

N∑
n=1

Kn

〉
t

,

where

Kn = 1
2Mnv2

n

is the kinetic energy of particle n, and v2
n is the square of the speed of particle n and

v2 = v2
x + v2

y.

The average ⟨...⟩t is over time. In the code, the kinetic energy at each time step is saved as Ek.
To get the average kinetic energy, we need to find the mean of Ek. However, we want the system
to be in steady-state when we make our measurements. As shown in the (right) panel of figure
1 we start the simulation in an unusual state where all of the energy is kinetic. It takes at least
5 simulation time units before K and U reach steady-states. To account for this relaxation, run
the simulation for 1000 simulation time units (TT=1000;) but do not use the first 10% of the
data to calculate the average kinetic energy. MATLAB has a simple way of implementing this
(K=mean(Ek(fix(.1*end):end));). end is a shorthand for the length of the vector, and fix
returns the integer part of a number.

P : To measure the pressure P , we need to find the average force on the walls per unit length. This is
the 2D analog of force per unit area. The current code does not save the force on walls, but does
save the potential energy. For example, for the left wall: Ewp(nt,1)=K*sum(dw.ˆ2)/2; %PE. By
analogy, update the code from Question 3 to measure the force on each wall over time in a variable
like this: Fws=zeros(Nt,4);.

(1) As a check of the updated code with force measurements, run the code for these conditions:

1 %% Experimental Parmeters
2 N=80; % number of particles
3 D=2; % mean diameter of particles
4 pd=0; % particle diameter poly−dispersity
5 rho=1; % areal density
6
7 Dn=D*(1+pd*randn(1,N)); % list of particle diameters
8 Dmax=max(Dn); % maximum particle diameter
9
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10 M=rho*pi*Dn.ˆ2/4; % mass of particles
11
12 K=1000; % spring constant for harmonic force law
13
14 Lx=3*9*D; % size of box
15 Ly=3*11*D;
16
17 E=10; % Total Energy
18
19 TT=1000; % total simulation time

To simplify the theory the disks are mono-disperse pd=0;, and N=80; to increase averaging.
K=1000; so the particle will overlap less, and E=10; to increase the number of collisions. The
ideal gas law only applies to dilute systems, so this box has 9 = 3 × 3 times the original area, but
is the same shape as our previous examples. For these conditions the force per unit length on each
of the four walls from the particles is approximately −0.0034 −0.0030 0.0032 0.0031 for the
left, top, right, bottom. Pressure is tensor so we need to define a sign convention. One common
convention is that pressure is positive when the particles are pushing the walls outward.
(a) For the force per unit length above, explain why all of the pressures are positive.
(b) Why are the pressures different on each wall?
(c) Are the numbers the same each time you run to code? Why? Why not?

To get the pressure average all 4 wall pressures (0.0032). Now we can check the ideal gas law. A
nice way to express The law for the case of R = 1 as explain above is to look at the quantity

Z = PA

NT

which is 1 if the law is true. For the example above, P=0.032, T=0.125, A=Lx*Ly=3564, N=80,
and P*A/N/T=1.17.

(2) Re-run the code above 5 times to estimate the error in Z. Report the average value of Z and the
standard deviation for the 5 runs.

(3) For the next step we want to be able to run the code for a particular area fraction phi. Currently
phi is an output of the code. To make it an input we need to calculate Lx and Ly from phi. However
phi cannot determine both lengths, so we can fix the aspect ratio G=Lx/Ly to 9/11. Using the
equation above for phi and the definition of G show that Lx=sqrt(pi*G*sum(Dn.ˆ2)/phi)/2;
and Ly=Lx/G; will make a system with area fraction phi.

(4) Measure Z for 20 values of the area fraction phi from 0.02 to 0.7, holding N, D, E fixed. To make
the phi list in MATLAB use phi list=.02+(0:19)/19*(.7−.02);. One way to do this is to do
it by hand.
(a) Change phi in the simulation.
(b) Run the simulation.
(c) Determine and save Z.
(d) Repeat for all phi in the list.
However it may be useful to make a script to do this. Here is an example,

1 phi list=.02+(0:19)/19*(.7−.02);
2
3 Nphi=length(phi list);
4
5 Zs=zeros(1,Nphi);
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6
7 for nphi=1:Nphi % loop over all area fractions
8 phi=phi list(nphi); % set phi to np−th value
9

10 disp(nphi); % user feedback
11 tic; md011; toc; % run simulation
12
13 Zs(nphi)=calcZ(Fws,Ek,Lx,Ly,N); % calculate and store Z
14
15 % plot results as they are calculated
16 figure(2);
17 plot(phi list,Zs,'.');
18 drawnow;
19 figure(1);
20 end

The script makes a list of phi. Then in a for loop sets phi from the list. You should replace the
function calcZ with your own code to calculate Z. The key for this to work is that the simulation
md011 does not set phi, so comment out the line that sets phi. Also, you can not use any variables
in the script that are also in the simulation code.

(5) Plot Z vs. phi. It should approach 1 as the area fraction goes to zero. However, as ϕ increases
the area that the particles can explore get smaller. A simple correction is to remove the area taken
up by the particles themselves. Show that this leads to a correction of the form Z = 1/(1 − 2ϕ).
(Hint: Draw a 4 × 4 box with a disk of diameter 1 in the center. Now shade the area where the
center of another particle of the same diameter could be. What is the area of the excluded region?
This excluded area is shared by the pair of particles so the total exclude area for each is 1/2 of this
area.) This correction is due to Van der Waals. One problem with Van der Waals correction is that
it diverges at ϕ = 1/2. One solution is to just use the linear part Z = 1/(1 − 2ϕ) ≃ 1 + 2ϕ, since
the excluded volume is only correct when the density is low. Another common ad hoc correction
is:

Z = 1
1 − 2ϕ

= 1 + 1
1 − 2ϕ

− 1

= 1 + 1 − 1 + 2ϕ

1 − 2ϕ

= 1 + 2ϕ

1 − 2ϕ

≃ 1 + 2ϕ

1 − 2ϕ + ϕ2 = 1 + 2ϕ

(1 − ϕ)2

A slightly less ad hoc method due to Carnahan and Starling gives this approximation:

Z = 1 + 2ϕ − 7/8ϕ2

(1 − ϕ)2
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Add all of these approximations:
Z = 1 Ideal

Z = 1
1 − 2ϕ

first-order exculed area (Van der Waals)

Z = 1 + 2ϕ linear Van der Waals

Z = 1 + 2ϕ

(1 − ϕ)2 ad-hoc Van der Waals

Z = 1 + 2ϕ − 7/8ϕ2

(1 − ϕ)2 Carnahan and Starling

to your measured Z plot. For the plot limit the x-axis to 0–0.75 and the y-axis to 0–15. In MATLAB
axis([0 .75 0 15]). For Z = 1/(1 − 2ϕ) only plot up to ϕ = 1/2.
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