Prof. Mark D Shattuck
Physics 39907 Computational Physics
October 5, 2023

Problem Set 4

Question 1. Special Matrices: Create a MATLAB function to calculate the four special matrices that we discussed in class: K, T, B, and C for any size N.

$$
\begin{aligned}
& K=\left[\begin{array}{rrrrrrr}
2 & -1 & 0 & 0 & 0 & \ldots & 0 \\
-1 & 2 & -1 & 0 & 0 & \ldots & 0 \\
0 & -1 & 2 & -1 & 0 & & \vdots \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & \ldots & 0 & -1 & 2 & -1 & 0 \\
0 & \ldots & 0 & 0 & -1 & 2 & -1 \\
0 & \ldots & 0 & 0 & 0 & -1 & 2
\end{array}\right] \\
& T=\left[\begin{array}{rrrrrrr}
1 & -1 & 0 & 0 & 0 & \ldots & 0 \\
-1 & 2 & -1 & 0 & 0 & \ldots & 0 \\
0 & -1 & 2 & -1 & 0 & & \vdots \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & \ldots & 0 & -1 & 2 & -1 & 0 \\
0 & \ldots & 0 & 0 & -1 & 2 & -1 \\
0 & \ldots & 0 & 0 & 0 & -1 & 2
\end{array}\right] \\
& B=\left[\begin{array}{rrrrrrr}
1 & -1 & 0 & 0 & 0 & \ldots & 0 \\
-1 & 2 & -1 & 0 & 0 & \ldots & 0 \\
0 & -1 & 2 & -1 & 0 & & \vdots \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & \ldots & 0 & -1 & 2 & -1 & 0 \\
0 & \ldots & 0 & 0 & -1 & 2 & -1 \\
0 & \ldots & 0 & 0 & 0 & -1 & 1
\end{array}\right] \\
& C=\left[\begin{array}{rrrrrrr}
\\
2 & -1 & 0 & 0 & 0 & \ldots & -1 \\
-1 & 2 & -1 & 0 & 0 & \ldots & 0 \\
0 & -1 & 2 & -1 & 0 & & \vdots \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & \ldots & 0 & -1 & 2 & -1 & 0 \\
0 & \ldots & 0 & 0 & -1 & 2 & -1 \\
-1 & \ldots & 0 & 0 & 0 & -1 & 2
\end{array}\right]
\end{aligned}
$$

As a start:

```
function [K,T,B,C]=ktbc(N)
% ktbc <Special 2nd diff matrices.>
% Usage:: [K,T,B,C]=ktbc(N[5])
%
% revision history:
% 09/17/2023 Mark D. Shattuck <mds> kt.bc.m
%% Parse Input
if(~exist('N','var') || isempty(N))
    N=5;
end
%% Main
K=toeplitz([2 -1 zeros(1,N-2)]);
```

Question 2. Second-order Differences: Consider the effect of one row far from the boundaries of the second-order difference operator:

$$
\frac{\Delta^{2}}{\Delta^{2}}=-\frac{K}{\Delta^{2}}=\frac{1}{\Delta^{2}}\left[\begin{array}{rrrrr}
\ddots & & & & \\
1 & -2 & 1 & & \\
& 1 & -2 & 1 & \\
& & 1 & -2 & 1 \\
& & & & \ddots
\end{array}\right]
$$

which operates on a the points of a discrete function $f_{n}=f(n \Delta)$. The result gives

$$
\frac{1}{\Delta^{2}} \Delta^{2} f=g
$$

and as a sum gives,

$$
g_{n}=\frac{1}{\Delta^{2}} \sum_{k} \Delta_{n k}^{2} f_{k} .
$$

We can use this simple calculation

$$
g_{n}=g(n \Delta)=\frac{1}{\Delta^{2}}\left[\begin{array}{lll}
1 & -2 & 1
\end{array}\right]\left[\begin{array}{l}
f(n \Delta-\Delta) \\
f(n \Delta) \\
f(n \Delta+\Delta)
\end{array}\right]
$$

to evaluate g_{n}. For example if $f_{n}=C$, where C is a constant then,

$$
g_{n}=g(n \Delta)=\frac{1}{\Delta^{2}}\left[\begin{array}{lll}
1 & -2 & 1
\end{array}\right]\left[\begin{array}{l}
C \\
C \\
C
\end{array}\right]=\frac{C}{\Delta^{2}}(1-2+1)=0 .
$$

(1) Use the Taylor expansion around $n \Delta$ show that

$$
g_{n}=g(n \Delta)=\frac{1}{\Delta^{2}}\left[\begin{array}{lll}
1 & -2 & 1
\end{array}\right]\left[\begin{array}{l}
f(n \Delta-\Delta) \\
f(n \Delta) \\
f(n \Delta+\Delta)
\end{array}\right] \simeq f^{\prime \prime}(n \Delta)+\frac{1}{12} f^{(4)}(n \Delta) \Delta^{2}+\mathcal{O}\left(\Delta^{4}\right)
$$

(2) Find g_{n} for:
(a) $f(x)=C x, f_{n}=C n \Delta$, where C is a constant.
(b) $f(x)=C x^{2}, f_{n}=C(n \Delta)^{2}$, where C is a constant.
(c) $f(x)=C x^{3}, f_{n}=C(n \Delta)^{3}$, where C is a constant.
(d) $f(x)=C x^{4}, f_{n}=C(n \Delta)^{4}$, where C is a constant.
(e) $f(x)=C e^{i k x}, f_{n}=C e^{i k n \Delta}$, where C and k are a constants, and i is the imaginary number.
(f) $f(x)=C \sin k x, f_{n}=C \sin (k n \Delta)$, where C and k are a constants.
(g) $f(x)=C \cos k x, f_{n}=C \cos (k n \Delta)$, where C and k are a constants.
(3) For which of the previous, is g_{n} equal to the exact second derivative of $f(x)$ and why?

Question 3. Fixed-Fixed: Solve the following problem:

$$
-\frac{d^{2} u(x)}{d x^{2}}=f(x), \quad u(0)=0, u(1)=0
$$

Solve analytically and using finite differences with $h=1 / 6,1 / 11$, and $1 / 50$ for
(1) $f(x)=1$
(2) $f(x)=\delta\left(x-\frac{2}{3}\right)$
(3) $f(x)=\sin \pi x$

For each forcing function make a plot with the analytic and 3 finite difference solutions. Hint: It would probably be useful to make a function or script which depends on x and f. For example, here is a start:

```
function u=solveFixFix(f,x)
% solveFixFix <Solve -u'(x)=f(x) with u(a)=0, u(b)=0 on the interval x=[a:h:b]>
% Usage:: u=solveFixFix(f,x[0:1/6:1])
%
% revision history:
% 10/05/2023 Mark D. Shattuck <mds> solveFixFix.m
%% Parse Input
% x is optional
if(~exist('x','var') || isempty(x))
    x=0:1/6:1;
end
%% Main
N=length(x); % size of x
h=x(2)-x(1); % size of h nb: should check N>=2
if length(f) ~}=N-
    disp('length(f) must be length(x)-2');
    u=-1;
    return
end
K=ktbc (N-2);
u=% add code to solve problem here %
```

This can be used in conjunction with a plotting script like the following:

```
%% Plot multiple
clf; % clear figure
xx=0:.01:1; % x-values for exact solution
hlist=[1/6 1/11 1/50]; % list of h values
mk={'square','+','○'}; % list of markers
plot(xx,(1-xx).*xx/2,'k--','linewidth',3); % plot exact
hold all; % turn on over plot
for nh=1:length(hlist)
    h=hlist(nh); % set h
    x=0:h:1; % make new x
    N=length(x); % length of x
    u=solveFixFix(ones(N-2,1),x); % solution
    % plot
    plot(x,u,mk{nh},'markersize',10,'linewidth',2);
end;
hold off; % turn off over plot
set(gca,'fontsize',15)
xlabel('Position');
ylabel('Displacement')
```

Question 4. Free-Fixed: Solve the following problem:

$$
-\frac{d^{2} u(x)}{d x^{2}}=f(x), \quad u^{\prime}(0)=0, u(1)=0 .
$$

Solve analytically and using finite differences to second-order accuracy with $h=1 / 6,1 / 11$, and $1 / 50$ for
(1) $f(x)=1$
(2) $f(x)=1-x$
(3) $f(x)=\delta\left(x-\frac{1}{3}\right)$

For each forcing function make a plot with the analytic and 3 finite difference solutions.
Question 5. Free-Free: Consider the following problem:

$$
-\frac{d^{2} u(x)}{d x^{2}}=f(x), \quad u^{\prime}(0)=0, u^{\prime}(1)=0 .
$$

(1) What is the discrete and analytic condition(s) on $f(x)$ for a solution to exist?
(2) What happens if those conditions are not met?
(3) If a solution exist, solve analytically and using finite differences to second-order accuracy with $h=1 / 6,1 / 11$, and $1 / 50$ for
(a) $f(x)=1$
(b) $f(x)=\delta\left(x-\frac{1}{3}\right)-\delta\left(x-\frac{2}{3}\right)$
(c) $f(x)=\sin 2 \pi x$

Make a plot with the analytic and 3 finite difference solutions. Describe the solution in words or using a picture.

Question 6. Delta functions: Consider the following piece-wise linear functions:

$$
\begin{aligned}
& R(x-a)=\left\{\begin{array}{ll}
0 & x \leq a \\
x-a & x>a
\end{array} \quad R_{n-k}=\left\{\begin{array}{ll}
0 & n \leq k \\
n-k & n>k
\end{array}=\left[\begin{array}{ll}
\vdots \\
0 \\
\vdots \\
0 & \left(k^{\text {th }} \text { row }\right) \\
1 & \\
\vdots \\
n-k & \left(n^{\text {th }} \text { row }\right) \\
\vdots
\end{array}\right]\right.\right. \\
& v(x)=3 R(x-4) \quad V_{n}=3 R_{n-4}=\left[\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
3 \\
6 \\
\vdots
\end{array}\right] \\
& u(x)=\left\{\begin{array}{ll}
C x & x \leq 0 \\
D x & x>0
\end{array} \quad U_{n}=\left\{\begin{array}{ll}
C n & n \leq 0 \\
D n & n>0
\end{array}=\left[\begin{array}{r}
\vdots \\
-2 C \\
-C \\
0 \\
D \\
2 D \\
\vdots
\end{array}\right]\right.\right.
\end{aligned}
$$

(1) Write $u(x)$ in terms of $R(x)$ and write U_{n} in terms of R_{n}
(2) Find the second derivatives $R^{\prime \prime}(x), v^{\prime \prime}(x)$, and $u^{\prime \prime}(x)$ and second difference $\boldsymbol{\Delta}^{2} R_{n-k}, \boldsymbol{\Delta}^{2} V_{n}$, and $\Delta^{2} U_{n}$. The following definitions may be useful:

$$
\left.\begin{array}{l}
S(x-a)=\left\{\begin{array}{ll}
0 & x \leq a \\
1 & x>a
\end{array} \quad S_{n-k}=\left\{\begin{array}{ll}
0 & n \leq k \\
1 & n>k
\end{array}=\left[\begin{array}{l}
\vdots \\
0 \\
1 \\
\vdots
\end{array} \quad\left(k^{\mathrm{th}} \mathrm{row}\right)\right.\right.\right. \\
\delta(x-a)=\left\{\begin{array}{ll}
\infty & x=a \\
0 & \text { else }
\end{array} \quad \delta_{n-k}=\left\{\begin{array}{ll}
1 & n=k \\
0 & \text { else }
\end{array}=\left[\begin{array}{l}
\vdots \\
0 \\
1 \\
0 \\
\vdots
\end{array}\left(k^{\mathrm{th}} \text { row }\right)\right.\right.\right. \\
\end{array}\right]
$$

where

$$
\int_{-\infty}^{\infty} \delta(x-a) d x=1
$$

and

$$
\int_{-\infty}^{\infty} \delta(x-a) f(x) d x=f(a)
$$

Question 7. First Differences: Consider the following definition of the forward difference operator:

$$
d u_{n}=\sum_{k} D_{n k} u_{k}=u_{n+1}-u_{n}
$$

where

$$
\begin{aligned}
D_{n k}=\mathbf{D} & =\left[\begin{array}{rrrrr}
-1 & 1 & 0 & & \\
0 & -1 & 1 & & \\
& \ddots & \ddots & \ddots & \\
& & 0 & -1 & 1
\end{array}\right] \\
& =\operatorname{toeplitz}\left(\left[\begin{array}{lll}
-1 & \left.\operatorname{zeros}(1, \mathrm{~N}-2)],\left[\begin{array}{lll}
-1 & 1 & \operatorname{zeros}(1, \mathrm{~N}-2)
\end{array}\right]\right)
\end{array} .\right.\right.
\end{aligned}
$$

For example,

$$
\mathbf{D}_{4} u=\left[\begin{array}{rrrr}
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4}
\end{array}\right]=\left[\begin{array}{l}
u_{2}-u_{1} \\
u_{3}-u_{2} \\
u_{4}-u_{3}
\end{array}\right]
$$

(1) If \mathbf{D}_{N} operates on an $N \times 1$ vector u how big is \mathbf{D} ?
(2) Why is \mathbf{D} not square?
(3) Is D invertible?
(4) The inverse of differentiation is integration. The discrete version of integration is summation. The summation matrix \mathbf{S} is a lower-triangular matrix of all ones. For example,

$$
\mathbf{S}_{4} u=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4}
\end{array}\right]=\left[\begin{array}{l}
u_{1} \\
u_{1}+u_{2} \\
u_{1}+u_{2}+u_{3} \\
u_{1}+u_{2}+u_{3}+u_{4}
\end{array}\right]
$$

Therefore another candidate for the difference operator would be the inverse of $\mathbf{S}, \mathcal{D}=\mathbf{S}^{-1}$. How does \mathcal{D} differ from \mathbf{D} ?
(5) Show that:

$$
\mathbf{S}\left[\begin{array}{c}
\mathbf{0} \\
\mathbf{D}
\end{array}\right] u=u-u_{1}
$$

and that it is the discrete version of the fundamental theorem of calculus:

$$
\int_{0}^{x} f^{\prime}(x) d x=f(x)-f(0)
$$

(6) Show that:
(a) $K=\mathbf{D D}^{T}$,
(b) $B=\mathbf{D}^{T} \mathbf{D}$,
(c) $T=\mathcal{D}^{T} \mathcal{D}$,

What would $\mathcal{D} \mathcal{D}^{T}$ represent?

Question 8. Summation by parts: Find and verify the discrete equivalent for integration by parts:

$$
\int_{-\infty}^{\infty} u(x) v^{\prime}(x) d x=-\int_{-\infty}^{\infty} u^{\prime}(x) v(x) d x
$$

using first-order finite differences.
Question 9. $L D L^{T}: K_{4}$ is a symmetric matrix so it has an ldl decomposition given by:

$$
K_{4}=\left[\begin{array}{rrrr}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right]=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
-\frac{1}{2} & 1 & 0 & 0 \\
0 & -\frac{2}{3} & 1 & 0 \\
0 & 0 & -\frac{3}{4} & 1
\end{array}\right]\left[\begin{array}{rrrr}
\frac{2}{1} & 0 & 0 & 0 \\
0 & \frac{3}{2} & 0 & 0 \\
0 & 0 & \frac{4}{3} & 0 \\
0 & 0 & 0 & \frac{5}{4}
\end{array}\right]\left[\begin{array}{rrrr}
1 & -\frac{1}{2} & 0 & 0 \\
0 & 1 & -\frac{2}{3} & 0 \\
0 & 0 & 1 & -\frac{3}{4} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

The sequence $d=\left[\frac{2}{1}, \frac{3}{2}, \frac{4}{3}, \frac{5}{4}\right]$ can be realized concisely in MATLAB using $d=(2: 5) . /(1: 4)$. Complete the following MATLAB function to calculate the L and d and optionally $D=d i a g(d)$ for any value of N by extending the pattern in d and L.

```
function [L,d,D]=ldlK(N)
% ldlK <Calculate the LDL' decomposition of K.>
% Usage:: [L,d,[D]]=ldlK(N[4])
% then L*diag(d)*L'=L*D*L''=K
%
% revision history:
% 10/05/2023 Mark D. Shattuck <mds> ldlK.m
%% Parse Input
if(~exist('N','var') || isempty(N))
    N=4;
end
%% Main
d=(2:5)./(1:4); % correct for N=4 fix for N
L=eye(N)-diag(???,-1); % fill in to get correct L
% optional full D
if(nargout>2)
    D=diag(d);
end
```

When it is working this statement: [L, d]=ldlk(11); norm(L*diag(d)*L'-ktbc(11)) should return 0.

Question 10. Matrix Symmetries: A is an $N \times M$ matrix, C is a symmetric $M \times M$ matrix and x is a $N \times 1$ vector.
(1) What shape is $A^{T} C A$ and is it symmetric? Why or why not?
(2) What shape is $x^{T} A^{T} A x$? Show that it is always greater than or equal to zero for all x ? For what x will it be zero? (hint: Think proof by parentheses. What does $A x$ represent?)

