Prof. Mark D Shattuck
Physics 39907 Computational Physics
November 14, 2023

Problem Set 5

Question 1. 2×2 Matrices: Find explicit examples of 2×2 matrices with the following properties.
(1) $A^{2}=-I$ for A with all real entries.
(2) $P^{2}=I$ for $P \neq I$.
(3) $L U=U L$ for U upper- and L lower-triangular.
(4) $L U \neq U L$ for U upper- and L lower-triangular.
(5) $B C=-C B$ for $B C \neq 0$.
(6) $D^{2}=0$ with all elements of D are non-zero.

Question 2. LDU factorization: Find the values of w, x, y, z such that:

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=L D U=\left[\begin{array}{ll}
1 & 0 \\
w & 1
\end{array}\right]\left[\begin{array}{ll}
x & 0 \\
0 & y
\end{array}\right]\left[\begin{array}{ll}
1 & z \\
0 & 1
\end{array}\right]
$$

(1) Can all matrices A be decomposed this way? What are the conditions on a, b, c, d for this decomposition to work (or not work)?
(2) Assuming the decomposition exists, what are the conditions on w, x, y, z for A^{-1} to exist?
(3) Show that:

$$
A^{-1}=\frac{1}{\operatorname{det}(A)}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

(4) What is the condition on A for the inverse to exist? How does it compare with the conditions on w, x, y, z above?
(5) MATLAB has a function $[L, U]=l u(A)$ that returns the $L U$ decomposition. Make a new MATLAB function that returns the $A=L D U$ decomposition: $[\mathrm{L}, \mathrm{D}, \mathrm{U}]=1 \mathrm{du}(\mathrm{A})$. Here is a start:

```
function [L,D,U]=ldu(A)
% ldu <LDU decomposition of a matrix.>
% Usage:: [L,D,U]=ldu(A)
%
% revision history:
% 10/26/2023 Mark D. Shattuck <mds> ldu.m
%% Main
[L,U]=lu(A);
D=???
U=???
```

(6) Not all matrices A can be decomposed into $A=L D U$, where L is lower triangular. However, there is always a permutation of A which can be factored. So there is a always a permutation matrix P, a lower-triangular matrix L and an upper-triangular matrix U such that $P A=L U$. Further there is a unique factorization if the all of the diagonals of L are 1 . Notice that $P^{2}=I$ and so $A=P L U$.

So the MATLAB command $[L, U]=l u(A)$ actually returns $L=P L$. Show that:

$$
\left[\begin{array}{ll}
0 & 1 \\
2 & 3
\end{array}\right]
$$

does not have an $L U$ decomposition and find its $P L U$ decomposition and its $P L D U$ decomposition.
Question 3. Linear Equations: Find the linear combination of these 3 vectors:

$$
u_{1}=\left[\begin{array}{l}
4 \\
1 \\
3
\end{array}\right], u_{2}=\left[\begin{array}{r}
2 \\
-4 \\
9
\end{array}\right], u_{3}=\left[\begin{array}{r}
-1 \\
-2 \\
3
\end{array}\right]
$$

which gives

$$
b=\left[\begin{array}{r}
-2 \\
2 \\
9
\end{array}\right]
$$

Question 4. Energy in a spring system: Consider a 3 mass 4 spring system with fixed-fixed boundaries separated by 1 :

In class, we found the matrix representation of this system:

$$
\begin{aligned}
e & =\Delta u \\
T & =C e \\
f & =\Delta^{T} T
\end{aligned}
$$

(1) What are the sizes of each matrix e, Δ, u, T, C, f ?
(2) Assuming the applied forces are constant, write the total work done on the system for a displacement of

$$
u=\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]
$$

directly in components and in matrix notation.
(3) Find the change in potential energy of the springs for the same displacement u in both component form and matrix form.
(4) Use the work-energy theorem to find the total potential energy of the system after a displacement u with forces f.
(5) Show that the minimum potential energy corresponds to the force balance solution we derived in class.
(6) Find and plot the displacements for the case that $c_{m}=1+m / 2$, with masses $M_{n}=N-n$, where $N=4, \mathrm{n}=1: \mathrm{N}-1, \mathrm{~m}=1: \mathrm{N}$ for the case shown and the forces are from gravity i.e., $f_{n}=M_{n} g$ and $g=1$. You can plot the displacements against n.
(7) Find the solution for $N=20$.

