Prof. Mark D Shattuck
Physics 39907 Computational Physics
December 4, 2023

Problem Set 6

Question 1. Eigen-decomposition: Find the matrix A with eigenvalues $\lambda_{1}=5, \lambda_{2}=3$ and eigenvectors $y_{1}=(1,0), y_{2}=(1,1)$. Use MATLAB to find [S e]=eig (A) to show your answer is correct.
Question 2. Markov Matrices: A Markov matrix is a special matrix where each column sums to 1. This is a 2×2 example:

$$
A=\left[\begin{array}{cc}
\frac{8}{10} & \frac{3}{10} \\
\frac{2}{10} & \frac{7}{10}
\end{array}\right] .
$$

A Markov chain uses a Markov matrix to evolve a state at time n, u_{n}, to a state at $n+1$ according to this rule:

$$
u_{n+1}=A u_{n}
$$

For example, $u=[N, S]^{T}$ might represent the number of people N who live in the north and S the number in the south. During 1 year $8 / 10$ of the people living in the north, stay in the north, and $2 / 10$ move to the south. $7 / 10$ of those living in the south stay in the south, and $3 / 10$ move to the north.
(1) What does $u_{0}=\left[\begin{array}{c}10 \\ 0\end{array}\right]$ represent?
(2) Show that the Markov chain rule is consistent with the moving habits described above, by finding u_{1} for $u_{0}=\left[\begin{array}{c}10 \\ 0\end{array}\right]$ and $u_{0}=\left[\begin{array}{c}0 \\ 10\end{array}\right]$.
(3) Show that $u_{n}=A^{n} u_{0}$.
(4) Find the eigenvalues and eigenvectors of A.
(5) Express the equation for u_{n} in terms of the eigen-decomposition $A=S \Lambda S^{-1}$.
(6) Find u_{1}, u_{2}, and u_{3} given that $N=1,000,000$ people live in the North at $n=0$ and zero people live in the south $S=0$.
(7) Use the eigen-decomposition of A to find A^{100} and u_{100} how does it compare to the infinite time steady-state (fixed-point) A^{∞} and u_{∞}.
(8) For n large how does the state u_{n} depend on the initial state u_{0} ?

Question 3. Eigen-system of K : The k-th eigenvector y_{k} of K_{N} is:

$$
y_{k}=(\sin (k \pi h), \sin (2 k \pi h), \ldots, \sin (N k \pi h))
$$

where $h=1 /(N+1)$.
(1) Find the first eigenvalue of K_{N} by direct multiplication of the first row of K_{N} by y_{1}. (Useful Identity: $\sin 2 x=2 \sin x \cos x)$.
(2) Use MATLAB to find eig (K5), where $\mathrm{K} 5=K_{5}$. Show that it matches the general equation for the eigenvalues of K_{N} :

$$
\lambda_{k}=2(1-\cos k \pi h)
$$

$\mathrm{e}=\mathrm{eig}(\mathrm{K})$ returns a column vector. It is useful to express $\lambda=\left(\lambda_{1}, \ldots, \lambda_{N}\right)$ as column vector lam in MATLAB as well. Then e-lam should be a column vector of zeros (possibly with round-off errors of order eps).

Question 4. Linear-Constant-Coefficient-Finite-Difference-Ordinary-Differential-Equation-Solver (lccfdodes): We discussed a number of integration schemes to solve the ordinary differential equation:

$$
\dot{u} \equiv \frac{d u}{d t}=A u
$$

where u is an $M \times 1$ vector and A is a an $M \times M$ constant matrix. Follow the steps below to write a MATLAB function that solves $\dot{u}=A u$ for initial condition u_{0} with time-step $d t$ and N steps.
(1) Here is a start:

```
function u=lccfdodes(A,u0,dt,N)
% lccfdodes <Linear-Constant-Coefficient-Finite-Difference-
% Ordinary-Differential-Equation-Solver (lccfdodes)>
% Usage:: u=lccfdodes(A,u0,dt,N)
%
% Solves du/dt=Au with u(0)=u0 t=(0:N-1)*dt; u(:,n) and u0 are column vectors
% revision history:
% 11/01/2023 Mark D. Shattuck <mds> lccfdodes.m
%% Main
M=???; % number of equations
u=???; % initialize u(t) to zeros, one Mx1 vector for each of N times
u(:,1)=???; % set initial condition
G=???; % define growth factor G
% loop over times 1 through N-1
for n=1:N-1
    u(:,n+1)=???; % update u_n+1 using G and u_n
end
```

(2) For the growth Factor, discretize the the time derivative to first order:

$$
\begin{aligned}
\frac{d u}{d t} & \simeq \frac{u(t+\Delta)-u(t)}{\Delta}+\mathcal{O}(\Delta) \\
& =\frac{u_{n+1}-u_{n}}{\Delta}
\end{aligned}
$$

where $u_{n}=u(n \Delta)$, and $t=n \Delta$. For the right-hand side start with the Forward Euler (FE) approximation:

$$
\frac{u_{n+1}-u_{n}}{\Delta}=A u_{n} .
$$

For G in the code solve this equation for u_{n+1} and find G such that: $u_{n+1}=G u_{n}$. Fill in $\mathrm{G}=$? ? ? ; with the G you found, using dt for the scalar Δ. Note: For a matrix B and vector $v,(I+B) v=v+B v$.
(3) Test your code on the equations for a simple harmonic oscillator:

$$
\begin{aligned}
& \dot{x}=v \\
& \dot{v}=-x
\end{aligned}
$$

with initial condition $x=1$ and $v=0$. The following commands (script) should produce a $x-v$ phase space plot like the one in figure 1, when you fill in the correct values for A and u0:

Figure 1. Phase-space trajectory for simple harmonic oscillator using forward Euler.

```
A=???; % fill in SHM matrix A from du/dt=Au;
u0=???; % fill in initial conditions
N=32; % Number of time points
dt=2*pi/(N-1); % Time step
u=lccfdodes(A,u0,dt,N); % solve the equation
%% Make a phase space x-v plot
h=plot(u(1,:),u(2,:),'.-');
set(h,'markersize',20); % increase marker size
axis('equal')
set(gca,'fontsize',15); % make font larger
xlabel('Position (x)');
ylabel('Velocity (v)');
```

(4) Add the exact solution to the plot.
(5) Find the G for Backward Euler (BE) using the approximation:

$$
\frac{u_{n+1}-u_{n}}{\Delta}=A u_{n+1},
$$

and solving for u_{n+1} such that: $u_{n+1}=G u_{n}$. Note that u_{n+1} is on the right-hand-side this time. You may need to use inverses. However, in MATLAB use \backslash instead of inv. Add the BE solution to the plot.
(6) (Optional:) It might be useful to add a new input to your lccfdodes code to allow you to change the integrator from FE to BE and others (see below). One easy way is to use the switch-case statement. Here is an example. Add a new input itype to the function:

```
function u=lccfdodes(A,u0,dt,N,itype)
% lccfdodes <Linear-Constant-Coefficient-Finite-Difference-
% Ordinary-Differential-Equation-Solver (lccfdodes)>
% Usage:: u=lccfdodes(A,u0,dt,N,itype{['FE'],'BE','TP','LF'})
```

Then in place of $G=$???; add the following:

```
% define growth factor G
switch itype
    case 'FE'
        G=???; % forward Euler
    case 'BE'
        G=???; % backward Euler
    case 'TP'
        G=???; % trapazoid method 2nd-order
    case 'LF'
        G=???; % leapfrog
end
```

The switch-case statement is a shorthand for cascading if..then..else..end statements. It executes only the code under the case if case cond==itype. You can read more in the documentation for switch. It is often useful to have a default choice for itype. To implement that add:

```
%% Parse Input
if(~exist('itype','var') || isempty(itype))
    itype='FE';
end
```

before you use itype. Then the function call lccfdodes ($\mathrm{A}, \mathrm{u0}, \mathrm{dt}, \mathrm{N}$) is the same as the function call lccfdodes (A, u0, dt, N, 'FE'). Note the way this is set up the case of itype matters. So 'FE'~='fE'. You could use the command upper to modify this behavior.
(7) Find the G for the trapezoid method (TP) using the approximation:

$$
\frac{u_{n+1}-u_{n}}{\Delta}=A \frac{u_{n}+u_{n+1}}{2}
$$

and solving for u_{n+1} such that: $u_{n+1}=G u_{n}$. Add this solution to the plot.
(8) Find the G for the explicit modified Euler method (ME). To see the pattern start with FE for SHM:

$$
\begin{aligned}
\frac{x_{n+1}-x_{n}}{\Delta} & =v_{n} \\
\frac{v_{n+1}-v_{n}}{\Delta} & =-x_{n} \\
\frac{1}{\Delta}\left(\left[\begin{array}{l}
x \\
v
\end{array}\right]_{n+1}-\left[\begin{array}{l}
x \\
v
\end{array}\right]_{n}\right) & =\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
v
\end{array}\right]_{n} \\
\frac{u_{n+1}-u_{n}}{\Delta} & =A u_{n} \\
u_{n+1}-u_{n} & =A \Delta u_{n} \\
u_{n+1} & =u_{n}+A \Delta u_{n}=(I+A \Delta) u_{n}=G_{F E} u_{n}
\end{aligned}
$$

To make the modification replace $-x_{n}$ on the rhs of the second equation with $-x_{n+1}$. This is still explicit since x_{n+1} can be calculated from the first equation.

$$
\begin{aligned}
\frac{x_{n+1}-x_{n}}{\Delta} & =v_{n} \\
\frac{v_{n+1}-v_{n}}{\Delta} & =-x_{n+1} \\
x_{n+1}-x_{n} & =v_{n} \Delta \\
v_{n+1}-v_{n} & =-x_{n+1} \Delta . \\
x_{n+1} & =x_{n}+v_{n} \Delta \\
v_{n+1} & =v_{n}-x_{n+1} \Delta .
\end{aligned}
$$

Collecting $n+1$ terms on the left:

$$
\begin{aligned}
x_{n+1} & =x_{n}+v_{n} \Delta \\
v_{n+1}+x_{n+1} \Delta & =v_{n} .
\end{aligned}
$$

Converting to matrix form and solving:

$$
\begin{aligned}
{\left[\begin{array}{ll}
1 & 0 \\
\Delta & 1
\end{array}\right]\left[\begin{array}{l}
x \\
v
\end{array}\right]_{n+1} } & =\left[\begin{array}{ll}
1 & \Delta \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
v
\end{array}\right]_{n} \\
{\left[\begin{array}{ll}
1 & 0 \\
\Delta & 1
\end{array}\right] u_{n+1} } & =\left[\begin{array}{ll}
1 & \Delta \\
0 & 1
\end{array}\right] u_{n} \\
u_{n+1} & =\left[\begin{array}{ll}
1 & 0 \\
\Delta & 1
\end{array}\right]^{-1}\left[\begin{array}{cc}
1 & \Delta \\
0 & 1
\end{array}\right] u_{n} . \\
u_{n+1} & =\left[\begin{array}{cc}
1 & 0 \\
-\Delta & 1
\end{array}\right]\left[\begin{array}{cc}
1 & \Delta \\
0 & 1
\end{array}\right] u_{n} . \\
u_{n+1} & =\left[\begin{array}{cc}
1 & \Delta \\
-\Delta & 1-\Delta^{2}
\end{array}\right] u_{n} . \\
u_{n+1} & =G u_{n}, \\
G & =\left[\begin{array}{cc}
1 & \Delta \\
-\Delta & 1-\Delta^{2}
\end{array}\right] .
\end{aligned}
$$

To see the general pattern notice that A can be broken up into a strictly lower triangular part L and an upper triangular part $U=A-L$ such that $A=L+U=L+A-L=A$. To find L in MATLAB use the function tril $(A,-1)$. tril (A, k) returns a lower-triangular matrix from A starting at the k-th diagonal. $k=0$ is the main diagonal, $k>0$ is above the diagonal, and $k<0$ is below the main diagonal. Using this decomposition and returning to the generic forward Euler and replacing A :

$$
\begin{aligned}
u_{n+1} & =(I+A \Delta) u_{n}=(I+(L+U) \Delta) u_{n} \\
& =L \Delta u_{n}+(I+U \Delta) u_{n} .
\end{aligned}
$$

Now all of the terms $L \Delta u_{n}$ can be replaced by previously calculated terms $L \Delta u_{n+1}$ since L has only non-zero terms below the main diagonal:

$$
\begin{aligned}
u_{n+1} & =L \Delta u_{n+1}+(I+U \Delta) u_{n} \\
u_{n+1}-L \Delta u_{n+1} & =(I+U \Delta) u_{n} \\
(I-L \Delta) u_{n+1} & =(I+U \Delta) u_{n} \\
u_{n+1} & =(I-L \Delta)^{-1}(I+U \Delta) u_{n}
\end{aligned}
$$

Implement this formula and add to your plot. You should see an ellipse instead of a circle. Notice that we could have defined $\mathrm{L}=\mathrm{tril}(\mathrm{L}, 0)$ and then $U=A-L$ would be strictly upper-triangular. Then we could replace $U u_{n}$ with $U u_{n+1}$. In fact there are many ways to chose the order of evaluation since any permutation of A does not change the equations. So there are N ! ways, where N is the rank of A. For the 2×2 we have been using there are 2 ways. One gives an ellipse tipping left and the other to the right.
(9) (Optional:) Here is the last scheme that we discussed LF:

Leapfrog:

$$
\frac{u_{n+1}-u_{n-1}}{2 \Delta}=A u_{n}
$$

(10) Include all of you code and a single plot of the exact solution with the all 4 schemes $\mathrm{FE}, \mathrm{BE}, \mathrm{TP}$, and ME (and LF if you did it) on one plot.

Question 5. Magnetic Dipole in a Magnetic Field: The equations for a magnetic moment vector $m=$ $\left(m_{x}, m_{y}, m_{z}\right)$ in a magnetic field $B=(0,0,1)$ is a good test problem for the code lccfdodes from the previous problem. The moment experiences a torque in the magnetic field and evolves according to the Bloch equations:

$$
\begin{aligned}
\frac{d m}{d t} & =m \times B-R m+M_{0} \\
R & =\left[\begin{array}{ccc}
\frac{1}{T_{2}} & 0 & 0 \\
0 & \frac{1}{T_{2}} & 0 \\
0 & 0 & \frac{1}{T_{1}}
\end{array}\right] \\
M_{0} & =\left(0,0, \frac{1}{T_{1}}\right)
\end{aligned}
$$

R is a relaxation matrix of positive relaxations times T_{1} and T_{2} with $T_{1} \geq T_{2} . m \times B$ is the cross product.
(1) Rewrite the equation for m in this matrix form:

$$
\frac{d m}{d t}=A m+b
$$

and find A and b in terms of T_{1} and T_{2}.
(2) The current function lccfdodes ($\mathrm{A}, \mathrm{u} 0, \mathrm{dt}, \mathrm{N}$) does not allow for the constant term b. To handle this case define u such that $m=u-A^{-1} b$, and show that:

$$
\frac{d u}{d t}=A u .
$$

(3) If the initial condition $m(0)=m_{0}$, what is the initial condition for u ?

Figure 2. Solution to the Bloch equations.
(4) How can you recover the real solution m from the solution u that comes from:
u=lccfdodes (A, u0, dt, N) ; ?
What MATLAB command will you use to account for the fact that u is a list of vectors at each of n time points?
(5) Solve this system with initial conditions $\mathrm{m} 0=[1 ; 0 ; 0], \mathrm{T} 1=10$, $\mathrm{T} 1=8$, for a total time of $\mathrm{T}=100$, with $\mathrm{dt}=.1$, to produce plot like figure 2 , using $\operatorname{plot} 3(\mathrm{~m}(1,:), \mathrm{m}(2,:), \mathrm{m}(3,:))$.
(6) Comment on the effect of changing T_{1} and T_{2}.
(7) Comment on the effect of changing integration schemes? Chose one to make a plot to turn in.

Question 6. Linear Predator-Prey Model: The population of rabbits r grows at a rate of $6 r$ from births, but decreases at a rate of $-2 f$ due to predation from the population of foxes f. The fox population grows at a rate $2 r+f$ due to increase of food and birth. This leads to the following equations:

$$
\begin{aligned}
\frac{d r}{d t} \equiv \dot{r} & =6 r-2 f \\
\dot{f} & =2 r+f
\end{aligned}
$$

(1) Define $u=(r, f)$ and convert these equations to matrix form $\dot{u}=A u$.
(2) What is A?
(3) What are the eigen-values Λ and eigen-vectors S of A?
(4) Check your answer using MATLAB: $[\mathrm{S}, \mathrm{e}]=\mathrm{eig}(\operatorname{sym}(\mathrm{A})) . \mathrm{e} \equiv \Lambda$.
(5) Rewrite the equation using the eigen-decomposition of A.
(6) Substitute $y=S^{-1} u$ into the equation, and show it reduces to $\dot{y}=\Lambda y$, using the fact that differentiation and matrix multiplication are linear so that $B \dot{u}=(\dot{B} u)$, for any matrix B.
(7) Using $y=\left(y_{1}, y_{2}\right)$, rewrite $\dot{y}=\Lambda y$ as two equations and solve for y_{1} and y_{2} with initial conditions y_{1}^{0} and y_{2}^{0}. The first equations should be $\dot{y}_{1}=\lambda_{1} y_{1}$.
(8) Solve this model for analytically u given $u_{0}=u(0)$.
(9) Show the solution is equivalent to $u=S e^{\Lambda t} S^{-1} u_{0}$. Note: this e is Euler's constant not the eigenvalue matrix.
(10) In MATLAB there are 2 different functions to find the exponential of matrix. exp (e) is the element-wise exponentiation, where each element of the matrix is exponentiated. expm is the matrix exponentiation. It uses the Taylor expansion:

$$
\operatorname{expm}(\mathrm{A}) \equiv \exp A=I+A+\frac{1}{2} A^{2}+\ldots+\frac{1}{N!} A^{N}
$$

For the solutions to differential equation we need the matrix version. If A is diagonal then the Taylor expansion is simplified since diag ($v)^{\wedge} k$ equals diag ($v^{\wedge} k$). Look at exp (e) and expm (e) in MATLAB and explain the difference. Here e is the eigenvalue matrix Λ.
(11) This model predicts that rabbits and foxes will grow without bound, which is only a good model for early times when rabbit food is plentiful. However it does predict the ratio of rabbits to foxes. Plot the solution $r(t) / f(t)$ for the initial condition of $r=10$ and $f=10$ using $d t=1 / 20$ for the interval $[0 \mathrm{~T}]$, where $\mathrm{T}=5$. To evaluate a matrix exponential at many times you will need a loop. For example to find $q(t)=e^{A t}$ for $\mathrm{t}=0: \mathrm{dt}: \mathrm{T}$ use:

```
1 t=0:dt:T;
q=zeros(1,N);
for n=1:N
    q(n)=expm(A*t(n));
end
```

(12) Compare the exact solution to lccfdodes. Rate each of the 4 integrators that we discussed.
(13) Compare to MATLAB's integrator ode45. The code to get the solution is:

```
1 t=0:dt:T; % list of times to find the solution
sol=deval(ode45(@(t,u) A*u,[0 T],u0),t);
```

Where A is the same matrix, and $u 0$ is the initial conditions.

