Prof. Mark D Shattuck
Physics 39907 Computational Physics
December 22, 2023

## Final Exam

Question 1. Finite Element Method (FEM): FEM can be used to find the solution $u(x)$ to differential equations like those based on:

$$
u(x) \xrightarrow{A=\frac{d}{d x}} e(x)=\frac{d}{d x} u(x) \xrightarrow{C(x)} w(x)=C(x) e(x) \xrightarrow{A^{T}=-\frac{d}{d x}}-\frac{d}{d x} w(x)=f(x),
$$

which gives a strong form:

$$
\begin{align*}
-\frac{d}{d x} w(x) & =f(x)  \tag{1}\\
-\frac{d}{d x}(C(x) e(x)) & =f(x)  \tag{2}\\
-\frac{d}{d x}\left(C(x) \frac{d}{d x} u(x)\right) & =f(x) \quad \text { plus B.C. } \tag{3}
\end{align*}
$$

For FEM convert the strong form [[3] to the weak form by taking the inner product of the strong form with a test function $v(x)$ and applying integration by parts:

$$
\int_{a}^{b} \frac{d u(x)}{d x} v(x) d x=[u(x) v(x)]_{a}^{b}-\int_{a}^{b} u(x) \frac{d v(x)}{d x} d x
$$

The inner product on the range $[a, b]$ of $u(x)$ and $v(x)$ is

$$
(u(x), v(x))=\int_{a}^{b} u(x) v(x) d x
$$

Then the weak form of [3] is:

$$
\begin{align*}
\left(-\frac{d}{d x}\left(C(x) \frac{d}{d x} u(x)\right), v(x)\right) & =(f(x), v(x))  \tag{4}\\
\int_{a}^{b}-\frac{d}{d x}\left(C(x) \frac{d u(x)}{d x}\right) v(x) d x & =\int_{a}^{b} f(x) v(x) d x  \tag{5}\\
\int_{a}^{b} C(x) \frac{d u(x)}{d x} \frac{d v(x)}{d x} d x-\left[C(x) \frac{u(x)}{d x} v(x)\right]_{a}^{b} & =\int_{a}^{b} f(x) v(x) d x  \tag{6}\\
\int_{a}^{b} C(x) u^{\prime}(x) v^{\prime}(x) d x-\left[C(x) u^{\prime}(x) v(x)\right]_{a}^{b} & =\int_{a}^{b} f(x) v(x) d x \tag{7}
\end{align*}
$$

(1) Given the strong form:

$$
-u^{\prime \prime}(x)=\delta(x-a) \quad \text { with } u^{\prime}(0)=0, u(1)=0,0<a<1
$$

show that the weak form is:

$$
\begin{equation*}
\int_{0}^{1} u^{\prime}(x) v^{\prime}(x) d x=v(a) \tag{8}
\end{equation*}
$$



Figure 1. Piece-wise Cubic functions (a) at node 0 and (b) all functions that overlap $H_{1}$.
(2) In FEM, the solution $u(x)$ is approximated by:

$$
\begin{equation*}
u(x)=\sum_{k=0}^{K} u_{k} \phi_{k}(x) . \tag{9}
\end{equation*}
$$

For this problem we will use two piece-wise cubic functions centered at each node located at $x_{n}=n \Delta$ : a (H)eight function $H_{n}(x)$ and a (S)lope function $S_{n}(x)$ and corresponding coefficients $u_{n}^{H}$ and $u_{n}^{S}$. Figure 1(a) shows $H_{0}(x)$ and $S_{0}(x)$ centered at node 0 . The functions are zero and have zero slope at and beyond adjacent nodes at $\pm 1$. At the central node $0, H_{0}(0)$ has height 1 and slope 0 , but $S_{0}(0)$ has slope 1 and height 0 , so that $u_{n}^{H} H_{n}(x)+u_{n}^{S} S_{n}(x)$ has height $u_{n}^{H}$ and slope $u_{n}^{S}$ at node $n$. Using the symmetries, $H_{0}(x)=H_{0}(-x)$ and $S_{0}(x)=-S_{0}(-x)$, we can define them in terms local functions $H(x / \Delta)$ and $S(x / \Delta)$ on the interval $[-\Delta / \Delta, 0]=[-1,0]$, shown as the solid lines in figure $1(\mathrm{a})$ as follows:

$$
H_{0}(x)=H_{0}(x ; \Delta)= \begin{cases}0 & x / \Delta \leq-1  \tag{10}\\ H(x / \Delta) & -1 \leq x / \Delta \leq 0 \\ H(-x / \Delta) & 0 \leq x / \Delta \leq 1 \\ 0 & x / \Delta \geq 1\end{cases}
$$

and

$$
S_{0}(x)=S_{0}(x ; \Delta)= \begin{cases}0 & x / \Delta \leq-1  \tag{11}\\ S(x / \Delta) & -1 \leq x / \Delta \leq 0 \\ -S(-x / \Delta) & 0 \leq x / \Delta \leq 1 \\ 0 & x / \Delta \geq 1\end{cases}
$$

$H$ and $S$ are defined in local grid coordinates $x / \Delta$. These functions can be shifted to other nodes as shown in figure $1(\mathrm{~b})$ using this equation $H_{n}(x)=H_{0}((x / \Delta-n) \Delta)$ and $S_{n}(x)=S_{0}((x / \Delta-n) \Delta)$. All of the functions $H_{n}(x)$ and $S_{n}(x)$ are shown in figure 1(b) for the interval [0,2 $\Delta$ ]. This represents all of the functions that overlap $H_{1}(x)$ and $S_{1}(x)$.

Find a cubic function $H(x)$ with the following properties:
(a) $H(x)$ is a cubic. For example, $H(x)=s(x-a)(x-b)(x-c)$.
(b) The derivative $H^{\prime}(-1)=0$ and $H^{\prime}(0)=0$.
(c) $H(-1)=0$ and $H(0)=1$.

Show that the cubic function $S(x)=x(x+1)^{2}$ has the following properties:
(a) $S(x)$ is a cubic.
(b) The derivative $S^{\prime}(-1)=0$ and $S^{\prime}(0)=1$.
(c) $S(-1)=0$ and $S(0)=0$.
(3) Using the approximation above, the solution for nodes $0-N$ is

$$
\begin{equation*}
u(x)=\sum_{n=0}^{N} u_{n}^{S} S_{n}(x)+u_{n}^{H} H_{n}(x) \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
u^{\prime}(x)=\sum_{n=0}^{N} u_{n}^{S} S_{n}^{\prime}(x)+u_{n}^{H} H_{n}^{\prime}(x) \tag{13}
\end{equation*}
$$

From this equation or figure 1 find the value of $u(\Delta), u(\Delta / 2)$, and $u^{\prime}(\Delta)$ in terms of $u_{n}^{S}$ and $u_{n}^{H}$.
(4) Show that [12] can be written in matrix form:

$$
u(x)=\left[\begin{array}{lllll}
u_{0}^{S} & u_{0}^{H} & \ldots & u_{N}^{S} & u_{N}^{H}
\end{array}\right]\left[\begin{array}{c}
S_{0}(x) \\
H_{0}(x) \\
\vdots \\
S_{N}(x) \\
H_{N}(x)
\end{array}\right]=u^{T} \phi(x)
$$

and find a similar equation for $u^{\prime}(x)$ from [13]. What is the shape (size) of $u$ and $\phi$ ?
(5) Plug [12] into the weak form [8] for

$$
v_{k}(x)=\left[\begin{array}{c}
v_{0}(x) \\
\vdots \\
v_{2 N+1}(x)
\end{array}\right]=\left[\begin{array}{c}
S_{0}(x) \\
H_{0}(x) \\
\vdots \\
S_{N}(x) \\
H_{N}(x)
\end{array}\right]=\phi(x)
$$

to show that

$$
\begin{align*}
\sum_{n=0}^{N} \int_{0}^{1}\left(u_{n}^{S} S_{n}^{\prime}(x)+u_{n}^{H} H_{n}^{\prime}(x)\right) v_{k}^{\prime}(x) d x & =v_{k}(a)  \tag{14}\\
\left(\int_{0}^{1} \phi^{\prime}(x) \phi^{\prime}(x)^{T} d x\right) u & =\phi(a)  \tag{15}\\
K u & =f \tag{16}
\end{align*}
$$

What is the shape of $K$ ? Is $K$ symmetric? Why? Why not?
(6) Set up [16] to solve [3] with $a=3 / 8$, on a grid with 5 nodes and 4 intervals $x=\left[\begin{array}{lllll}0 & 1 & 2 & 3 & 4\end{array}\right]^{T} \Delta$, $\Delta=1 / 4$ by follow these steps:
(a) Fill in the missing elements in $f$ for $N=5$ :

$$
f=\left[\begin{array}{l}
S_{0}(3 / 8) \\
H_{0}(3 / 8) \\
S_{1}(3 / 8) \\
H_{1}(3 / 8) \\
S_{2}(3 / 8) \\
H_{2}(3 / 8) \\
S_{3}(3 / 8) \\
H_{3}(3 / 8) \\
S_{4}(3 / 8) \\
H_{4}(3 / 8)
\end{array}\right]=\left[\begin{array}{l}
0 \\
? ? ? \\
S_{0}((3 / 8 / \Delta-1) \Delta)=S_{0}(1 / 2 \Delta)=-S(-1 / 2)=-(-1 / 2)(-1 / 2+1)^{2}=1 / 8 \\
? ? ? \\
? ? ? \\
1 / 2 \\
0 \\
? ? ? \\
0 \\
0
\end{array}\right]
$$

(b) Find the functions $S_{0}^{\prime}, H_{0}^{\prime}, S_{1}^{\prime}, H_{1}^{\prime}$ in the interval $[0,1]$. From figure 1(b) notice that interval from [0, 1] is repeated in the interval [1,2], but with $H_{0} \rightarrow H_{1}, H_{1} \rightarrow H_{2}, S_{0} \rightarrow S_{1}, S_{1} \rightarrow S_{2}$. Therefore all of the terms in $K$ can be constructed from just the overlaps in the interval $[0,1]$. Fill in the missing function in this vector:

$$
\phi_{l o c}=\left[\begin{array}{c}
S_{0}^{\prime}(x) \\
H_{0}^{\prime}(x) \\
S_{1}^{\prime}(x) \\
H_{1}^{\prime}(x)
\end{array}\right]=\left[\begin{array}{c}
3 x^{2}-4 x+1 \\
6 x(x-1) \\
x(3 x-2) \\
? ? ?
\end{array}\right]
$$

(c) Evaluate [15] using the local $\phi_{l o c}$. There are 4 local function in each unit interval. Fill in the missing integrals in

$$
\begin{aligned}
K_{l o c}=\int_{0}^{1} \phi_{l o c} \phi_{l o c}^{T} d x & =\int_{0}^{1}\left[\begin{array}{c}
S_{0}^{\prime}(x) \\
H_{0}^{\prime}(x) \\
S_{1}^{\prime}(x) \\
H_{1}^{\prime}(x)
\end{array}\right]\left[\begin{array}{lllll}
S_{0}^{\prime}(x) & H_{0}^{\prime}(x) & S_{1}^{\prime}(x) & H_{1}^{\prime}(x)
\end{array}\right] d x \\
& =\left[\begin{array}{cccc}
\int_{0}^{1} S_{0}^{\prime}(x) S_{0}^{\prime}(x) d x & \int_{0}^{1} S_{0}^{\prime}(x) H_{0}^{\prime}(x) d x & ? ? ? & ? ? ? \\
\int_{0}^{1} H_{0}^{\prime}(x) S_{0}^{\prime}(x) d x & \int_{0}^{1} H_{0}^{\prime}(x) H_{0}^{\prime}(x) d x & ? ? ? & ? ? ? \\
? ? ? & ? ? ? & ? ? ? & ? ? ? \\
? ? ? & ? ? ? & ? ? ? & ? ? ?
\end{array}\right] \\
& =\frac{1}{30}\left[\begin{array}{ccccc}
30 \int_{0}^{1}(3 x-1)^{2}(x-1)^{2} d x=4 & ? ? ? & ? ? ? & ? ? ? \\
30 \int_{0}^{1} 6 x(3 x-1)(x-1)^{2} d x=3 & ? ? ? & ? ? ? & ? ? ? \\
& -1 & 3 & ? ? ? & ? ? ? \\
5 & -3 & -36 & -3 & ? ? ?
\end{array}\right] \\
& =\frac{1}{30}\left[\begin{array}{rrrr}
4 & ? ? ? & ? ? ? & ? ? ? \\
3 & ? ? ? & ? ? ? & ? ? ? \\
-1 & 3 & ? ? ? & ? ? ? \\
-3 & -36 & -3 & ? ? ?
\end{array}\right]
\end{aligned}
$$



Figure 2. Global $K$.
(d) Use the following equation to build the global $K$ from $K_{\text {loc }}$. The local matrix is shifted by 2 in each direction, then all of them are added for each unit in the grid.

$$
\begin{aligned}
K & =\left[\begin{array}{ccccccccc}
k_{11} & k_{12} & k_{13} & k_{14} & 0 & 0 & 0 & \ldots & 0 \\
k_{21} & k_{22} & k_{23} & k_{24} & 0 & 0 & 0 & \ldots & 0 \\
k_{31} & k_{32} & k_{33} & k_{34} & 0 & 0 & 0 & \ldots & 0 \\
k_{41} & k_{42} & k_{43} & k_{44} & 0 & 0 & 0 & \ldots & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots & 0
\end{array}\right]+\left[\begin{array}{ccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots & 0 \\
0 & 0 & k_{11} & k_{12} & k_{13} & k_{14} & 0 & \ldots & 0 \\
0 & 0 & k_{21} & k_{22} & k_{23} & k_{24} & 0 & \ldots & 0 \\
0 & 0 & k_{31} & k_{32} & k_{33} & k_{34} & 0 & \ldots & 0 \\
0 & 0 & k_{41} & k_{42} & k_{43} & k_{44} & 0 & \ldots & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots & 0
\end{array}\right]+\ldots \\
& +\left[\begin{array}{lllllllll}
0 & \ldots & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \ldots & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \ldots & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \ldots & 0 & 0 & 0 & k_{11} & k_{12} & k_{13} & k_{14} \\
0 & \ldots & 0 & 0 & 0 & k_{21} & k_{22} & k_{23} & k_{24} \\
0 & \ldots & 0 & 0 & 0 & k_{31} & k_{32} & k_{33} & k_{34} \\
0 & \ldots & 0 & 0 & 0 & k_{41} & k_{42} & k_{43} & k_{44}
\end{array}\right]
\end{aligned}
$$

The properly assembled $K$ is shown in figure 2(a). The figure was made using the following MATLAB command:

```
imagesc(K); axis('image'); colormap(jet(256));
```



Figure 3. Comparison of FEM, finite differences, and exact result.
(e) Apply the boundary conditions. Eliminate any $S_{n}$ or $H_{n}$ that are determined by the boundary conditions and trim the global $K$. The final $K$ is shown in figure 2(b).
(7) Use the $K$ and $f$ defined above to solve for $u$ and report the values.
(8) Use the following MATLAB script to plot the results:

```
N=5; % Number of nodes
a=3/8; % Location of forcing delta function
dx=1/(N-1); % grid spacing \Delta
K=???; % fill in the values for K
f=???; % fill in the values for f
u=???; % solve for u. note: include any boundary values as well.
u2=???; % solve the same problem using finite differences e.g., free-fixed (T)
x=0:dx/50:1; % locations to find U(x)
U=evalFEM(x,u,dx); % calculate U(x) from x, u, and, dx
ue=((1-x).*(x>a)+(1-a).*(x<=a))/4; % exact solution
% plot results
h=plot (x,U,(0:N-1)*dx,u2,'ro--', x,ue,'k--');
% make it pretty
set(h,'linewidth',3,'markersize',15);
set(gca,'fontsize', 20);
xlabel('$x$','interp','latex');
ylabel('$u(x)$','interp','latex');
```

In the script you will need to provide $K$ and $f$, and code to calculate the resulting coefficients $u$. The MATLAB function evalfem () used to evaluate equation [12] is here evalfem.m and listed below. It uses absolute values to express 10 and 11 more compactly in local coordinates $\nu=x / \Delta$ :

$$
\begin{aligned}
S_{0}(\nu) & = \begin{cases}\nu(|\nu|-1)^{2} & |\nu|<1 \\
0 & \text { else }\end{cases} \\
H_{0}(\nu) & = \begin{cases}(2|\nu|+1)(|\nu|-1)^{2} & |\nu|<1 \\
0 & \text { else }\end{cases}
\end{aligned}
$$

You will need to supply code to calculate the same solution using 5-point finite differences. The exact solution:

$$
u_{e}(x)= \begin{cases}(1-x) / 4 & a \geq x \leq 1 \\ (1-a) / 4 & 0 \geq x \leq a\end{cases}
$$

Use the code above or your own code to plot the FEM, FD, and exact solution.

```
function [U,S,H]=evalFEM(x,u,dx,H,S)
% evalFEM <Find value of C1 cubic FEM>
% Usage:: [U,S,H]=evalFEM(x,u,dx[1],...
% H[@(x) (2*abs(x)+1).*(abs (x)-1).^2.*(abs (x)<1)],\ldots
% S[@(x) x.*(abs(x)-1).^2.*(abs(x)<1)])
%
% revision history:
% 12/10/2023 Mark D. Shattuck <mds> evalFEM.m
%% Parse Input
if(~exist('dx','var') || isempty(dx))
    dx=1;
end
if(~exist('H','var') || isempty(H))
    H=@(x) (2*abs(x) +1).*(abs(x)-1).^2.* (abs (x)<1);
end
if(~exist('S','var') || isempty(S))
    S=@(x) x.*(abs (x)-1).^2.* (abs (x)<1);
end
%% Main
N=length(u)/2;
U=0;
for n=0:N-1;
    U}=\textrm{U}+\textrm{u}(2*n+1)*S(\textrm{x}/\textrm{dx}-\textrm{n})+\textrm{u}(2*\textrm{n}+2)*H(\textrm{t}/\textrm{dx}-\textrm{n})
end;
```

Question 2. Partial Differential Equation PDE: A PDE is a differential equation which depends on derivatives of more than one variable. In this problem, we will solve a modified 2D Cahn-Hilliard equation on periodic boundary conditions:

$$
\begin{align*}
\frac{\partial c}{\partial t} & =\nabla^{2} \mu  \tag{1}\\
\mu & =W(c)-\gamma \nabla^{2} c  \tag{2}\\
W(c) & =(c-1) c(c-1 / 2)  \tag{3}\\
\nabla^{2} & =\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}} \tag{4}
\end{align*}
$$

and $c=c(x, y, t)$ is a function of space and time. This equation determines the concentration $c(x, y, t)$ of one fluid mixed with another immiscible fluid, like oil and water. A concentration of 1 at position $(x, y)$ and time $t$ means all of one fluid. The concentration of the second fluid is $1-c(x, y, t)$. If the fluids start mixed, they will demix over time.
(1) Convert the equations to 1 dimension, by eliminating $y$. To get an equation of the form:

$$
\frac{\partial c(x, t)}{\partial t}=A(c(x, t))
$$

The function $A$ will depend on $c$ and its x-derivatives.
(2) Create a MATLAB script to begin solving these equation. You will need the constant gam=3e-5, the grid size $N x=128$, a domain of size $L x=1$; , and a time step of $d t=1 e-6$. From these calculate the grid spacing $d x=? ?$ ?.
(3) We will use first-order forward Euler integration to solve the equation in time. Discretize the equation in time and write the first order approximation for

$$
\frac{\partial c(x, t)}{\partial t} \approx \frac{c_{n+1}(x)-c_{n}(x)}{\Delta t}=A\left(c_{n}(x)\right)
$$

and solve for $c_{n+1}(x)$. This represents our update rule. What is $c_{n}(x)$ in terms of $c(x, t) ?$
(4) To update $c_{n}(x)$ we need an initial condition. Add a variable c to your code to represent $c_{n}(x)$ and set the initial condition to get a random 0 or 1 at each location. A good way to get random 1's and 0 's is with rand $(3,1)>1 / 2$. This will give a $3 \times 1$ column vector of random 1 's and 0 's. c should be a column vector of size [ $\mathrm{Nx}, 1$ ].
(5) To evaluate $A(c(x))$ second derivatives are needed. If we use a discrete representation of $c_{k}=$ $c(k \Delta x)$, the second derivative is:

$$
c^{\prime \prime}(k \Delta x) \approx \frac{c_{k-1}-2 c_{k}+c_{k+1}}{(\Delta x)^{2}}
$$

With periodic boundary conditions the matrix version is $D x x * C$, where

$$
\text { Dxx=toeplitz([-2 } 110 \text { ??? } 0 \quad 1]) / d x / d x ;
$$

Add this to your code and replace the 0 ??? 0 so that $D x x * c$ works for any size Nx vector c.
(6) Test $D x x$ on $\sin (2 * p i * x)$, where $x$ is $\operatorname{size}[N x, 1]$ and goes from 0 to $1-1 / N x$. When it is working $D x x * \sin (2 * \mathrm{pi*x})$ should be approximately $-(2 * \mathrm{pi})^{\wedge} 2 * \sin (2 * \mathrm{pi} * \mathrm{x})$, since $(\sin (a x))^{\prime \prime}=$ $-a^{2} \sin (x)$.
(7) Putting it all together. Add a loop to your code that will use the update rule above to move forward by steps of dt. The code will calculate $A(c)$ then update $c$ then repeat. Add an integration total time TT=. 05 ; to your code. Calculate the integer number of time steps Nt needed to reach TT
i.e., $\mathrm{Nt} * \mathrm{dt}$ is approximately TT. Here is my version with some blanks. It includes code to plot the solution, comments, and code to save the result which you should add to your code.

```
%% 1D Cahn-Hillard Simulator
% <CH1d.m> Mark D. Shattuck 12/10/2023
% revision history:
% 12/10/2023 Mark D. Shattuck <mds> CH1d.m
%
% 12/10/2023 mds set up for PHYS 339 final
%
%% Experimental Parameters
gam=.00003; % control parameter
Nx=128; % Number of grid points on
Lx=1; % Size of container
TT=.05; % Total simulation time
%% Simulation parameters
dt=1e-6;
%% Calculated parameters
Nt=???; % number of Time steps
dx=???; % grid spacing
x=(0:Nx-1)'*dx; % x-grid for plotting and testing
% 2nd derivative of a column vector
Dxx=toeplitz([-2 1 ???? 1])/dx/dx;
Dxx=sparse(Dxx); % convert to sparse for speed
%% initial conditions
C=rand(Nx,1)>1/2; % random initial condition
%% Save State
cs=zeros(Nx,Nt); % save every time step
%% Main loop
for nt=1:Nt
    mu=???; % mu is function of C, Dxx, and gam
    dc=Dxx*mu; % from equation [1]
    c=c+???; % update rule
    % give feedback by plotting
    if(rem(nt,fix(Nt/100))==0)
        plot(x,c)
        drawnow;
        disp([nt/100 mean(c(:))]);
    end
    cs(:,nt)=c; % save results
end
```



Figure 4. Space-time plot of 1D Cahn-Hillard equation.

When it is working use:

```
1 imagesc([0 Lx],[0 TT],CS');
2 xlabel('Space');
3 ylabel('Time');
4 colormap(jet(256));
```

to get a plot like figure 4. The red is one fluid and the blue is the second fluid. The red regions separate from the blue.
(8) Copy your 1D code to a new script and convert to 2D. There is not a lot to change. The main issue is the derivatives in $y$. If you convert c from a $[N x, 1]$ matrix to a [ $N x, N y$ ] matrix, then it turns out that multiplying $\mathrm{c} *$ Dyy' from the right by the transpose will take the derivative in the other direction, where Dyy is defined in analogy to Dxx. Second derivatives are symmetric Dyy=Dyy' so the transpose is not needed. Here is my version with missing parts:


Figure 5. 2D evolution of Cahn-Hillard equation

```
%% 2D Cahn-Hillard Simulator
% <CH1d.m> Mark D. Shattuck 12/10/2023
% revision history:
% 12/10/2023 Mark D. Shattuck <mds> CH1d.m
%
% 12/10/2023 mds set up for PHYS 339 final
% 12/14/2023 mds conver to 2D CH2d.m
%% Experimental Parameters
gam=.00003; % control parameter
Nx=128; % Number of grid points in x
Ny=128; % Number of grid points in y
Lx=1; % Size of container in x
Ly=1; % Size of container in y
TT=.05; % Total simulation time
%% Simulation parameters
dt=1e-6;
%% Calculated parameters
Nt=???; % number of Time steps
dx=???; % x-grid spacing
dy=???; % y-grid spacing
% 2nd derivative of a matrix
Dxx=toeplitz([-2 1 ???? 1]/dx/dx);
Dxx=sparse(Dxx); % convert to sparse for speed
Dyy=toeplitz([-2 1 ????? 1]/dy/dy);
Dyy=sparse(Dyy); % convert to sparse for speed
%% initial conditions
C=????; % random initial condition now (Nx,Ny)
%% Main loop
for nt=1:Nt
    mu=????; % mu is function of c, Dxx, and gam
    dc=Dxx*mu+mu*Dyy; % from equation [1]
    c=c+???; % update rule
    % give feedback by plotting
    if(rem(nt, fix(Nt/200))==0)
        imagesc([0 Ly],[0 Lx],c); % now display current image
        axis('image');
        drawnow;
        disp([nt/100 mean(c(:))]);
    end
end
```

When it is working it will look like figure 5.
(9) Try changing some things a see what happens. Some examples:
(a) Make Ly and/or Ny bigger or smaller.
(b) Change the initial condition so that there are more or less 1's.
(c) Changing the $1 / 2$ in $W(c)$ is interesting, $1 / 4$ or $3 / 4$.
(d) What happens if dt is too big? How big can it be? Is the maximum dt effected by other parameters.
(e) What does gam do?

