
Prof. Mark D Shattuck
Physics 39907 Computational Physics
December 22, 2023

Final Exam

Question 1. Finite Element Method (FEM): FEM can be used to find the solution u(x) to differential
equations like those based on:

u(x)
A= d

dx−−−→ e(x) = d

dx
u(x) C(x)−−→ w(x) = C(x)e(x)

AT =− d
dx−−−−−→ − d

dx
w(x) = f(x),

which gives a strong form:

− d

dx
w(x) = f(x) [1]

− d

dx
(C(x)e(x)) = f(x) [2]

− d

dx

(
C(x) d

dx
u(x)

)
= f(x) plus B.C. [3]

For FEM convert the strong form [[3] to the weak form by taking the inner product of the strong form
with a test function v(x) and applying integration by parts:∫ b

a

du(x)
dx

v(x) dx = [u(x)v(x)]ba −
∫ b

a
u(x)dv(x)

dx
dx

The inner product on the range [a, b] of u(x) and v(x) is

(u(x), v(x)) =
∫ b

a
u(x)v(x) dx.

Then the weak form of [3] is: (
− d

dx

(
C(x) d

dx
u(x)

)
, v(x)

)
= (f(x), v(x)) , [4]

∫ b

a
− d

dx

(
C(x)du(x)

dx

)
v(x) dx =

∫ b

a
f(x)v(x) dx, [5]

∫ b

a
C(x)du(x)

dx

dv(x)
dx

dx −
[
C(x)u(x)

dx
v(x)

]b

a

=
∫ b

a
f(x)v(x) dx, [6]

∫ b

a
C(x)u′(x)v′(x) dx − [C(x)u′(x)v(x)]ba =

∫ b

a
f(x)v(x) dx. [7]

(1) Given the strong form:

−u′′(x) = δ(x − a) with u′(0) = 0, u(1) = 0, 0 < a < 1,

show that the weak form is: ∫ 1

0
u′(x)v′(x) dx = v(a). [8]

1



2

(a)
−1.5 −1 −0.5 0 0.5 1 1.5

0

0.25

0.5

0.75

1 H0

S0

x/∆ (b)
0 0.5 1 1.5 2

0

0.25

0.5

0.75

1

H1 H2H0

S1

S2

S0

x/∆

Figure 1. Piece-wise Cubic functions (a) at node 0 and (b) all functions that overlap H1.

(2) In FEM, the solution u(x) is approximated by:

u(x) =
K∑

k=0
ukϕk(x). [9]

For this problem we will use two piece-wise cubic functions centered at each node located at
xn = n∆: a (H)eight function Hn(x) and a (S)lope function Sn(x) and corresponding coefficients
uH

n and uS
n. Figure 1(a) shows H0(x) and S0(x) centered at node 0. The functions are zero and

have zero slope at and beyond adjacent nodes at ±1. At the central node 0, H0(0) has height 1
and slope 0, but S0(0) has slope 1 and height 0, so that uH

n Hn(x) + uS
nSn(x) has height uH

n and
slope uS

n at node n. Using the symmetries, H0(x) = H0(−x) and S0(x) = −S0(−x), we can define
them in terms local functions H(x/∆) and S(x/∆) on the interval [−∆/∆, 0] = [−1, 0], shown as
the solid lines in figure 1(a) as follows:

H0(x) = H0(x; ∆) =


0 x/∆ ≤ −1
H(x/∆) −1 ≤ x/∆ ≤ 0
H(−x/∆) 0 ≤ x/∆ ≤ 1
0 x/∆ ≥ 1

[10]

and

S0(x) = S0(x; ∆) =


0 x/∆ ≤ −1
S(x/∆) −1 ≤ x/∆ ≤ 0
−S(−x/∆) 0 ≤ x/∆ ≤ 1
0 x/∆ ≥ 1

[11]

H and S are defined in local grid coordinates x/∆. These functions can be shifted to other nodes
as shown in figure 1(b) using this equation Hn(x) = H0((x/∆−n)∆) and Sn(x) = S0((x/∆−n)∆).
All of the functions Hn(x) and Sn(x) are shown in figure 1(b) for the interval [0, 2∆]. This repre-
sents all of the functions that overlap H1(x) and S1(x).



3

Find a cubic function H(x) with the following properties:
(a) H(x) is a cubic. For example, H(x) = s(x − a)(x − b)(x − c).
(b) The derivative H ′(−1) = 0 and H ′(0) = 0.
(c) H(−1) = 0 and H(0) = 1.

Show that the cubic function S(x) = x(x + 1)2 has the following properties:
(a) S(x) is a cubic.
(b) The derivative S ′(−1) = 0 and S ′(0) = 1.
(c) S(−1) = 0 and S(0) = 0.

(3) Using the approximation above, the solution for nodes 0-N is

u(x) =
N∑

n=0
uS

nSn(x) + uH
n Hn(x), [12]

and

u′(x) =
N∑

n=0
uS

nS ′
n(x) + uH

n H ′
n(x). [13]

From this equation or figure 1 find the value of u(∆), u(∆/2), and u′(∆) in terms of uS
n and uH

n .
(4) Show that [12] can be written in matrix form:

u(x) =
[
uS

0 uH
0 . . . uS

N uH
N

]


S0(x)
H0(x)

...
SN(x)
HN(x)

 = uT ϕ(x)

and find a similar equation for u′(x) from [13]. What is the shape (size) of u and ϕ?
(5) Plug [12] into the weak form [8] for

vk(x) =


v0(x)

...
v2N+1(x)

 =


S0(x)
H0(x)

...
SN(x)
HN(x)

 = ϕ(x)

to show that
N∑

n=0

∫ 1

0
(uS

nS ′
n(x) + uH

n H ′
n(x))v′

k(x) dx = vk(a) [14]
(∫ 1

0
ϕ′(x)ϕ′(x)T dx

)
u = ϕ(a) [15]

Ku = f. [16]

What is the shape of K? Is K symmetric? Why? Why not?
(6) Set up [16] to solve [3] with a = 3/8, on a grid with 5 nodes and 4 intervals x =

[
0 1 2 3 4

]T
∆,

∆ = 1/4 by follow these steps:



4

(a) Fill in the missing elements in f for N = 5:

f =



S0(3/8)
H0(3/8)
S1(3/8)
H1(3/8)
S2(3/8)
H2(3/8)
S3(3/8)
H3(3/8)
S4(3/8)
H4(3/8)



=



0
???
S0((3/8/∆ − 1)∆) = S0(1/2∆) = −S(−1/2) = −(−1/2)(−1/2 + 1)2 = 1/8
???
???
1/2
0
???
0
0



(b) Find the functions S ′
0, H ′

0, S ′
1, H ′

1 in the interval [0, 1]. From figure 1(b) notice that interval
from [0, 1] is repeated in the interval [1, 2], but with H0 −→ H1, H1 −→ H2, S0 −→ S1, S1 −→ S2.
Therefore all of the terms in K can be constructed from just the overlaps in the interval [0, 1].
Fill in the missing function in this vector:

ϕloc =


S ′

0(x)
H ′

0(x)
S ′

1(x)
H ′

1(x)

 =


3x2 − 4x + 1

6x(x − 1)
x(3x − 2)

???



(c) Evaluate [15] using the local ϕloc. There are 4 local function in each unit interval. Fill in the
missing integrals in

Kloc =
∫ 1

0
ϕlocϕ

T
loc dx =

∫ 1

0


S ′

0(x)
H ′

0(x)
S ′

1(x)
H ′

1(x)

 [S ′
0(x) H ′

0(x) S ′
1(x) H ′

1(x)
]

dx

=


∫ 1

0 S ′
0(x)S ′

0(x) dx
∫ 1

0 S ′
0(x)H ′

0(x) dx ??? ???∫ 1
0 H ′

0(x)S ′
0(x) dx

∫ 1
0 H ′

0(x)H ′
0(x) dx ??? ???

??? ??? ??? ???
??? ??? ??? ???



= 1
30


30
∫ 1

0 (3x − 1)2(x − 1)2 dx = 4 ??? ??? ???
30
∫ 1

0 6x(3x − 1)(x − 1)2 dx = 3 ??? ??? ???
−1 3 ??? ???
−3 −36 −3 ???



= 1
30


4 ??? ??? ???
3 ??? ??? ???

−1 3 ??? ???
−3 −36 −3 ???





5

(a) 2 4 6 8 10

2

4

6

8

10

(b) 2 4 6 8

1

2

3

4

5

6

7

8

Figure 2. Global K.

(d) Use the following equation to build the global K from Kloc. The local matrix is shifted by 2
in each direction, then all of them are added for each unit in the grid.

K =



k11 k12 k13 k14 0 0 0 . . . 0
k21 k22 k23 k24 0 0 0 . . . 0
k31 k32 k33 k34 0 0 0 . . . 0
k41 k42 k43 k44 0 0 0 . . . 0
0 0 0 0 0 0 0 . . . 0
0 0 0 0 0 0 0 . . . 0
0 0 0 0 0 0 0 . . . 0
... ... ... ... ... ... ... . . . ...
0 0 0 0 0 0 0 . . . 0


+



0 0 0 0 0 0 0 . . . 0
0 0 0 0 0 0 0 . . . 0
0 0 k11 k12 k13 k14 0 . . . 0
0 0 k21 k22 k23 k24 0 . . . 0
0 0 k31 k32 k33 k34 0 . . . 0
0 0 k41 k42 k43 k44 0 . . . 0
0 0 0 0 0 0 0 . . . 0
... ... ... ... ... ... ... . . . ...
0 0 0 0 0 0 0 . . . 0


+ . . .

+



0 . . . 0 0 0 0 0 0 0
0 . . . 0 0 0 0 0 0 0
... . . . ... ... ... ... ... ... ...
0 . . . 0 0 0 0 0 0 0
0 . . . 0 0 0 0 0 0 0
0 . . . 0 0 0 k11 k12 k13 k14
0 . . . 0 0 0 k21 k22 k23 k24
0 . . . 0 0 0 k31 k32 k33 k34
0 . . . 0 0 0 k41 k42 k43 k44


The properly assembled K is shown in figure 2(a). The figure was made using the following
MATLAB command:

imagesc(K); axis('image'); colormap(jet(256));



6

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

x

u
(x
)

Figure 3. Comparison of FEM, finite differences, and exact result.

(e) Apply the boundary conditions. Eliminate any Sn or Hn that are determined by the boundary
conditions and trim the global K. The final K is shown in figure 2(b).

(7) Use the K and f defined above to solve for u and report the values.
(8) Use the following MATLAB script to plot the results:

1 N=5; % Number of nodes
2 a=3/8; % Location of forcing delta function
3
4 dx=1/(N−1); % grid spacing \Delta
5 K=???; % fill in the values for K
6 f=???; % fill in the values for f
7
8 u=???; % solve for u. note: include any boundary values as well.
9

10 u2=???; % solve the same problem using finite differences e.g., free−fixed (T)
11
12 x=0:dx/50:1; % locations to find U(x)
13
14 U=evalFEM(x,u,dx); % calculate U(x) from x, u, and, dx
15
16 ue=((1−x).*(x>a)+(1−a).*(x<=a))/4; % exact solution
17
18 % plot results
19 h=plot(x,U,(0:N−1)*dx,u2,'ro−−',x,ue,'k−−');
20
21 % make it pretty
22 set(h,'linewidth',3,'markersize',15);
23 set(gca,'fontsize',20);
24 xlabel('$x$','interp','latex');
25 ylabel('$u(x)$','interp','latex');



7

In the script you will need to provide K and f , and code to calculate the resulting coefficients u.
The MATLAB function evalFEM() used to evaluate equation [12] is here evalFEM.m and listed
below. It uses absolute values to express 10 and 11 more compactly in local coordinates ν = x/∆:

S0(ν) =

ν(|ν| − 1)2 |ν| < 1
0 else

H0(ν) =

(2|ν| + 1)(|ν| − 1)2 |ν| < 1
0 else

You will need to supply code to calculate the same solution using 5-point finite differences. The
exact solution:

ue(x) =

(1 − x)/4 a ≥ x ≤ 1
(1 − a)/4 0 ≥ x ≤ a

Use the code above or your own code to plot the FEM, FD, and exact solution.

1 function [U,S,H]=evalFEM(x,u,dx,H,S)
2 % evalFEM <Find value of C1 cubic FEM>
3 % Usage:: [U,S,H]=evalFEM(x,u,dx[1],...
4 % H[@(x) (2*abs(x)+1).*(abs(x)−1).ˆ2.*(abs(x)<1)],...
5 % S[@(x) x.*(abs(x)−1).ˆ2.*(abs(x)<1)])
6 %
7
8 % revision history:
9 % 12/10/2023 Mark D. Shattuck <mds> evalFEM.m

10
11 %% Parse Input
12 if(˜exist('dx','var') | | isempty(dx))
13 dx=1;
14 end
15
16 if(˜exist('H','var') | | isempty(H))
17 H=@(x) (2*abs(x)+1).*(abs(x)−1).ˆ2.*(abs(x)<1);
18 end
19
20 if(˜exist('S','var') | | isempty(S))
21 S=@(x) x.*(abs(x)−1).ˆ2.*(abs(x)<1);
22 end
23
24 %% Main
25 N=length(u)/2;
26 U=0;
27 for n=0:N−1;
28 U=U+u(2*n+1)*S(x/dx−n)+u(2*n+2)*H(x/dx−n);
29 end;

https://gibbs.ccny.cuny.edu/teaching/f2023/PSets/evalFEM.m


8

Question 2. Partial Differential Equation PDE: A PDE is a differential equation which depends on
derivatives of more than one variable. In this problem, we will solve a modified 2D Cahn–Hilliard equation
on periodic boundary conditions:

∂c

∂t
= ∇2µ [1]

µ = W (c) − γ∇2c [2]
W (c) = (c − 1)c(c − 1/2) [3]

∇2 = ∂2

∂x2 + ∂2

∂y2 [4]

and c = c(x, y, t) is a function of space and time. This equation determines the concentration c(x, y, t) of
one fluid mixed with another immiscible fluid, like oil and water. A concentration of 1 at position (x, y)
and time t means all of one fluid. The concentration of the second fluid is 1 − c(x, y, t). If the fluids start
mixed, they will demix over time.

(1) Convert the equations to 1 dimension, by eliminating y. To get an equation of the form:
∂c(x, t)

∂t
= A(c(x, t)).

The function A will depend on c and its x-derivatives.
(2) Create a MATLAB script to begin solving these equation. You will need the constant gam=3e−5,

the grid size Nx=128, a domain of size Lx=1;, and a time step of dt=1e−6. From these calculate
the grid spacing dx=???.

(3) We will use first-order forward Euler integration to solve the equation in time. Discretize the
equation in time and write the first order approximation for

∂c(x, t)
∂t

≈ cn+1(x) − cn(x)
∆t

= A(cn(x)),

and solve for cn+1(x). This represents our update rule. What is cn(x) in terms of c(x, t)?
(4) To update cn(x) we need an initial condition. Add a variable c to your code to represent cn(x) and

set the initial condition to get a random 0 or 1 at each location. A good way to get random 1’s and
0’s is with rand(3,1)>1/2. This will give a 3 × 1 column vector of random 1’s and 0’s. c should
be a column vector of size [Nx,1].

(5) To evaluate A(c(x)) second derivatives are needed. If we use a discrete representation of ck =
c(k∆x), the second derivative is:

c′′(k∆x) ≈ ck−1 − 2ck + ck+1

(∆x)2

With periodic boundary conditions the matrix version is Dxx*c, where
Dxx=toeplitz([−2 1 0 ??? 0 1])/dx/dx;.

Add this to your code and replace the 0 ??? 0 so that Dxx*c works for any size Nx vector c.
(6) Test Dxx on sin(2*pi*x), where x is size [Nx,1] and goes from 0 to 1−1/Nx. When it is work-

ing Dxx*sin(2*pi*x) should be approximately −(2*pi)ˆ2*sin(2*pi*x), since (sin(ax))′′ =
−a2 sin(x).

(7) Putting it all together. Add a loop to your code that will use the update rule above to move forward
by steps of dt. The code will calculate A(c) then update c then repeat. Add an integration total
time TT=.05; to your code. Calculate the integer number of time steps Nt needed to reach TT



9

i.e., Nt*dt is approximately TT. Here is my version with some blanks. It includes code to plot the
solution, comments, and code to save the result which you should add to your code.

1 %% 1D Cahn−Hillard Simulator
2 % <CH1d.m> Mark D. Shattuck 12/10/2023
3
4 % revision history:
5 % 12/10/2023 Mark D. Shattuck <mds> CH1d.m
6 %
7 % 12/10/2023 mds set up for PHYS 339 final
8 %
9 %% Experimental Parameters

10 gam=.00003; % control parameter
11
12 Nx=128; % Number of grid points on
13 Lx=1; % Size of container
14
15 TT=.05; % Total simulation time
16
17 %% Simulation parameters
18 dt=1e−6;
19
20 %% Calculated parameters
21 Nt=???; % number of Time steps
22 dx=???; % grid spacing
23 x=(0:Nx−1)'*dx; % x−grid for plotting and testing
24
25 % 2nd derivative of a column vector
26 Dxx=toeplitz([−2 1 ???? 1])/dx/dx;
27 Dxx=sparse(Dxx); % convert to sparse for speed
28
29 %% initial conditions
30 c=rand(Nx,1)>1/2; % random initial condition
31
32 %% Save State
33 cs=zeros(Nx,Nt); % save every time step
34
35 %% Main loop
36
37 for nt=1:Nt
38 mu=???; % mu is function of c, Dxx, and gam
39 dc=Dxx*mu; % from equation [1]
40 c=c+???; % update rule
41
42 % give feedback by plotting
43 if(rem(nt,fix(Nt/100))==0)
44 plot(x,c)
45 drawnow;
46 disp([nt/100 mean(c(:))]);
47 end
48
49 cs(:,nt)=c; % save results
50 end



10

Space

T
im

e

0 0.2 0.4 0.6 0.8 1

0

0.01

0.02

0.03

0.04

0.05

Figure 4. Space-time plot of 1D Cahn-Hillard equation.

When it is working use:

1 imagesc([0 Lx],[0 TT],cs');
2 xlabel('Space');
3 ylabel('Time');
4 colormap(jet(256));

to get a plot like figure 4. The red is one fluid and the blue is the second fluid. The red regions
separate from the blue.

(8) Copy your 1D code to a new script and convert to 2D. There is not a lot to change. The main issue
is the derivatives in y. If you convert c from a [Nx,1] matrix to a [Nx,Ny] matrix, then it turns
out that multiplying c*Dyy' from the right by the transpose will take the derivative in the other
direction, where Dyy is defined in analogy to Dxx. Second derivatives are symmetric Dyy=Dyy' so
the transpose is not needed. Here is my version with missing parts:

t=0 t=0.005 t=0.025 t=0.05

Figure 5. 2D evolution of Cahn-Hillard equation



11

1 %% 2D Cahn−Hillard Simulator
2 % <CH1d.m> Mark D. Shattuck 12/10/2023
3
4 % revision history:
5 % 12/10/2023 Mark D. Shattuck <mds> CH1d.m
6 %
7 % 12/10/2023 mds set up for PHYS 339 final
8 % 12/14/2023 mds conver to 2D CH2d.m
9

10 %% Experimental Parameters
11 gam=.00003; % control parameter
12
13 Nx=128; % Number of grid points in x
14 Ny=128; % Number of grid points in y
15 Lx=1; % Size of container in x
16 Ly=1; % Size of container in y
17
18 TT=.05; % Total simulation time
19
20 %% Simulation parameters
21 dt=1e−6;
22
23 %% Calculated parameters
24 Nt=???; % number of Time steps
25 dx=???; % x−grid spacing
26 dy=???; % y−grid spacing
27
28 % 2nd derivative of a matrix
29 Dxx=toeplitz([−2 1 ???? 1]/dx/dx);
30 Dxx=sparse(Dxx); % convert to sparse for speed
31
32 Dyy=toeplitz([−2 1 ????? 1]/dy/dy);
33 Dyy=sparse(Dyy); % convert to sparse for speed
34
35 %% initial conditions
36 c=????; % random initial condition now (Nx,Ny)
37
38 %% Main loop
39 for nt=1:Nt
40 mu=????; % mu is function of c, Dxx, and gam
41 dc=Dxx*mu+mu*Dyy; % from equation [1]
42 c=c+???; % update rule
43
44 % give feedback by plotting
45 if(rem(nt,fix(Nt/200))==0)
46 imagesc([0 Ly],[0 Lx],c); % now display current image
47 axis('image');
48 drawnow;
49 disp([nt/100 mean(c(:))]);
50 end
51 end

When it is working it will look like figure 5.



12

(9) Try changing some things a see what happens. Some examples:
(a) Make Ly and/or Ny bigger or smaller.
(b) Change the initial condition so that there are more or less 1’s.
(c) Changing the 1/2 in W (c) is interesting, 1/4 or 3/4.
(d) What happens if dt is too big? How big can it be? Is the maximum dt effected by other

parameters.
(e) What does gam do?


	1. Question
	2. Question

