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Abstract 
A basic classical example of simple harmonic motion is the simple pendulum, 
consisting of a small bob and a massless string. In a vacuum with zero air re-
sistance, such a pendulum will continue to oscillate indefinitely with a con-
stant amplitude. However, the amplitude of a simple pendulum oscillating in 
air continuously decreases as its mechanical energy is gradually lost due to air 
resistance. To this end, it is generally perceived that the main role in the dis-
sipation of mechanical energy is played by the bob of the pendulum, and that 
the string’s contribution is negligible. The purpose of this research is to expe-
rimentally investigate the merit of this assumption. Thus, we experimentally 
investigate the damping of a simple pendulum as a function of its string di-
ameter and compare that to the contribution from its bob. We find out that 
although in some cases the effect of the string might be small or even negligi-
ble, in general the string can play a significant role, and in some cases even a 
greater role on the damping of the pendulum than its bob. 
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1. Introduction 

Perhaps the simplest oscillating system is a small object attached to a string of 
negligible mass, known as simple pendulum. If the amplitude of oscillations is 
small, the pendulum oscillates with a period T which is independent of the am-
plitude and is given by  

2π LT
g

=                           (1) 

where L is the length of the pendulum and g is the acceleration due to gravity 
(9.80 m/s2). In the absence of frictional losses, the hypothetical pendulum would 
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oscillate indefinitely. However, the amplitude of oscillations of any real undriven 
mechanical pendulum, including simple pendulum, continuously decreases as a 
result of frictional losses, mainly due to air resistance while its period and fre-
quency remain constant. To this end, the general assumption is that the drag 
force due to the air resistance on the bob of the pendulum is the cause of its 
damping, and normally the air resistance on the string of the pendulum is as-
sumed to be negligibly small. 

In order to be able to measure the gravitational acceleration very accurately, 
Nelson and Olsson [1] theoretically investigated the effect of air resistance on 
the bob as well as the string of a simple pendulum. However, they did not dis-
cuss the relative importance of these effects. Later on, Dunn [2] experimentally 
studied the damping effect of the string on a pendulum by varying the length of 
the string and the diameter of the bob, but did not mention what the diameter of 
the string was. Dunn concluded that string drag comprised 5% ± 4% of the 
damping in the experiment, a small effect but not negligible, and suggested that 
further investigation was warranted. 

Motivated by the work of Nelson and Olsson and by Dunn, we decided to 
further investigate the effect of string on damping of a simple pendulum. To do 
so, we experimentally studied the contribution to the damping of a simple pen-
dulum from strings of various diameters. 

2. General Remarks on Drag Force and Air Resistance  

When a solid object moves in a fluid, the magnitude of the drag force is in gen-
eral a function of the speed of the object, ( )F F v= . Expanding this function in 
a Taylor series about 0v = , we have  

( ) ( ) ( ) 20 0
0

1! 2!
F F

F F v v
′ ′′

= + + +                (2) 

However, the constant term is zero because when 0v =  there is no drag 
force. Therefore,  

2
1 2F c v c v= + +                        (3) 

where 1 2, ,c c   are constants. For small speeds, we can approximate the drag 
force by the first-order term and neglect the second- and higher-order terms. 
Experimentally it is found that for a relatively small object moving in air with 
speeds less than about 24 m/s, the force of air resistance is proportional to the 
first power of speed. For higher speeds, but below the speed of sound, the force 
is proportional to the square of the speed [3] [4]. 

The common practice, however, is to write the magnitude of the drag force on 
an object moving in a fluid as  

21
2 DF C Avρ=                         (4) 

where ρ  is the density of the fluid , v  is the velocity of the object, and A  is 
the frontal cross-sectional area of the object, i.e., the cross-sectional area of the 
object perpendicular to its direction of motion. The unitless parameter DC  is 
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the drag coefficient. Drag coefficient depends on the shape of the object and the 
Reynolds number,  

L v
Re

ρ
µ

=                          (5) 

where L is a characteristic diameter or linear dimension of the object, such as 
diameter of a sphere, and µ  is the absolute or dynamic viscosity of the fluid. 
For Re  of the order of about 1200 or less, the drag coefficient DC  is asymp-
totically proportional to 1Re− , which means that the drag force is a proportional 
to the first power of velocity [5] [6]. At higher Reynolds numbers and before the 
onset of turbulence flow, Reynolds number is fairly constant, which means that 
the drag force is quadratic in velocity. 

Therefore, for a simple pendulum moving with small speeds (long pendulum), 
the force of air resistance on its bob, bF , is proportional to its velocity,  

bF cv= −                         (6) 

where c  is a constant, independent of velocity, but depends on the shape and 
frontal cross-sectional area of the bob. We now calculate the force of air resis-
tance on the string of the pendulum. 

3. Drag Torque on the String of a Simple Pendulum  

Consider an element of the string of a pendulum of length dr  located at a dis-
tance r  from the support point and moving with velocity v , as shown in Fig-
ure 1(a). The magnitude of the drag force on this element of the string d sF  is 
proportional to the cross-sectional area of the element perpendicular to the di-
rection of motion, dD r , where D  is the diameter of the string. Furthermore, 
since this element is moving with small speeds, the drag force on it is propor-
tional to its speed. Therefore, we have  
 

 
(a)                                         (b) 

Figure 1. Diagrams of a simple pendulum showing (a) the drag force on an infinitesimal 
element of the string and (b) the net drag force on the string and on the bob. 
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( )d dsF k D r v=                        (7) 

where k  is a constant. But since v rθ=  , where θ  is time derivative of θ , 
we obtain  

d dsF kD r rθ=                          (8) 

Since this drag force is perpendicular to the string, its torque about the sup-
port point is  

2d d ds sr F kD r rτ θ= =                      (9) 

Integration of this equation over the length of the string, L, gives the total 
torque on the string,  

3
2

0
d

3
L

s
kL DkD r rτ θ θ= =∫                    (10) 

4. Equation of Motion  

Derivation of the equation of motion of the simple pendulum with a linear drag 
force is trivial, however, we present it here for completeness of the discussion. 
Figure 1(b) shows a simple pendulum with a bob of mass m and a total length L. 
The total drag force on the string and that on the bob of the pendulum are 
shown by sF  and bF , respectively. 

The equation of motion of the spring is  

Iτ α=∑                           (11) 

where all torques are calculated relative to the support point, α  is the angular 
acceleration of the pendulum about this point, and 2I mL=  is the moment of 
inertia of the pendulum about the support point (string has negligible mass). 
Using Figure 1(b), this equation reduces to  

2 sin s bmL mgL F Lθ θ τ= − − −                  (12) 

where sτ  is given by Equation (10). The third term on the right hand side of 
this equation is the torque caused by the force of air resistance on the bob of the 
pendulum, in which bF  is given by Equation (6), i.e.,  

bF cv cLθ= =                          (13) 

Therefore, after some simplifications, Equation (12) becomes  

sin 0g
L

θ κθ θ+ + =                       (14) 

where the damping constant κ  is defined by  

3
kLD c

m m
κ = +                         (15) 

which has the units of s−1 in the SI system. The first term on the right hand side 
of this equation is the contribution to the damping of the pendulum due to its 
string and the second term is that due to its bob. Finally, if the amplitude of os-
cillations is small, we have sinθ θ≈ , and Equation (14) reduces to  
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0g
L

θ κθ θ+ + =                         (16) 

Equation (16) is a homogeneous second order linear differential equation with 
constant coefficients, whose solution is straightforward. We fist construct the 
auxiliary equation,  

2 0gq q
L

κ+ + =                        (17) 

which has the solutions  

2 4

2

g
Lq

κ κ− ± −
=                       (18) 

Since air resistance is small, we have  

2 4g
L

κ <                           (19) 

and Equation (18) becomes  

24

2

gi
Lq

κ κ− ± −
=                       (20) 

Then, the general solution of the differential equation of motion (16) is  

( ) ( )2e cos sint A t B tκθ ω ω−= +                   (21) 

where A  and B  are constants to be determined by the initial conditions, and 
the angular frequency ω  is given by  

2

4
g
L

κω = −                          (22) 

Applying the initial condition ( ) 00tθ θ= =  and ( )0 0tθ = = , we obtain  

( ) ( )2
0e cos sin

2
t t tκ κθ θ ω ω

ω
−  = +  

               (23) 

Therefore, the amplitude of the oscillations decreases exponentially with time 
according to  

2
0 e tκθ θ −=                          (24) 

5. Experiment and Results  

Throughout our experiment we used a steel ball of mass 485 g and diameter 50.9 
mm as the bob of our simple pendulum. For string we used monofilament nylon 
fishing lines of various diameters. During the entire experiment, the total length 
of the pendulum was 261.4 cm, 258.9 of which was the length of the string. Al-
though the thickness of each string was consistent throughout its length, we 
measure the diameter 8 times along its length while the string was under load. 
Table 1 shows the mean diameters of the strings. 

With each string, we started with an amplitude of 30 cm for the oscillations of 
the bob and measured the time interval for every 1 cm decrease in the amplitude  
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Table 1. Fishing test lines used as strings and their diameters. 

Test Line 8-lb 12-lb 20-lb 30-lb 50-lb 

Diameter (mm) 0.250 0.279 0.428 0.570 0.718 

 
until the amplitude dropped to 10 cm. We note here that since the length of the 
string is about 259 cm, the linear amplitude of 30 cm corresponds to an angular 
amplitude of about 6.65  . Then the error in using the approximation sinθ θ≈  
in Equation (14) is only about 0.2%. We also note that the mass of the heaviest 
string used in our experiments (the 50-lb test line) was only 1.5 g, which is quite 
negligible compared to the mass of the bob. 

Equation (24) may be written as  

0

ln
2

tθ κ
θ
 

= − 
 

                      (25) 

Therefore, a graph of ( )0ln θ θ  versus t should be a straight line with a slope 
of 2κ− . Figure 2 shows the results of our experiment for three of the pendu-
lums. We have not plotted all of them to avoid cluttering of the figure. 

Figure 2 reveals two things. First, the fact that plots of ( )0ln θ θ  versus t are 
fairly straight lines in each case is indicative of the approximate correctness of 
the model used in this analysis. Second, since the same pendulum bob was used 
in all experiments, the distinct difference in the graphs for the lines with differ-
ent diameters show that the string of the pendulum plays a significant role in the 
damping of the pendulum. If this was not the case and if the damping was al-
most entirely due to the bob of the pendulum, the graphs should all coincide, or 
at least be indistinguishable from one another. Figure 2 also shows the linear 
least-squares fit to the data for each pendulum as a solid line. The slope of each 
line is 2κ− . From these slopes we have calculated the value of κ  for each 
string, which are shown in Table 2. 

Because we used the same bob and the same string length in all experiments, 
according to Equation (15) the graph of the damping constant κ as a function of 
string diameter D should be a straight line. This is shown in Figure 3. As can be 
seen, the plot of κ vs D is, to a good approximation, a straight line. A least- 
squares analysis gives the following equation for the best line,  

( ) ( ) 40.777 0.067 7.24 0.32 10Dκ −= ± + ± ×              (26) 

in which D is in meters and κ is in s−1. This line is also plotted in the figure. 
The first term in Equation (26) is the contribution of the string of the pendu-

lum to its damping ( Sκ ), and the second term is that of its bob ( Bκ ). Using the 
diameters of our strings and Equation (26), we can calculate these contributions 
in our experiments. The results are shown in Table 3. 

6. Discussion  

In all cases studied, the period of the pendulum was about 3.27 s. Since the initial 
amplitude of the motion of the bob was 30 cm, this gives an average speed of  
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Figure 2. Plots of amplitude versus time for the pendulums with different string diame-
ters. 
 

 
Figure 3. Damping constant as a function of string diameter. 
 
Table 2. Damping constant for various strings tested. 

String Diameter D (mm) 0.250 0.279 0.428 0.570 0.718 
Damping Constant κ (10−4 s−1) 9.02 9.37 10.75 11.95 12.56 

 
Table 3. Contributions to the damping constant of the pendulum from the string ( Sκ ) 
and from the bob ( Bκ ). 

String Diameter (mm) Sκ  (10−4 s−1) Bκ  (10−4 s−1) 

0.250 9.18 7.24 
0.279 9.41 7.24 
0.428 10.57 7.24 
0.570 11.67 7.24 
0.718 12.82 7.24 



P. Mohazzabi, S. P. Shankar 
 

129 

0.367 m/s. With a room-temperature density of 1.204 kg/m3 [7] and an absolute 
or dynamic viscosity of 51.983 10−×  Pa·s [8] for air, and the diameter of the bob 
of 0.0509 m, Equation (5) gives a Reynolds number of 1134. Therefore, the linear 
model used for air resistance in this work is justified, which is further supported 
by the results in Figure 2 and Figure 3. 

The results of Table 3 show that for all pendulums tested, the string plays a 
more significant role in damping than the bob, and this effect increases with the 
string diameter. This, however, is not surprising because even though the string 
of a simple pendulum may be very thin, its total frontal cross-sectional area can 
be comparable to that of the bob of the pendulum. For example, our string with 
diameter 0.718 mm and length 259 cm, has a frontal cross-sectional area of 18.6 
cm2 compared to 20.3 cm2 for the spherical bob. In addition, for Reynolds num-
ber of 1000, the drag coefficient of a sphere is 0.47 whereas that of a wire (a cir-
cular cylinder with L D = ∞ ) perpendicular to the flow is 1.2 [9] [10]. A com-
bination of these factors results in a significant damping effect by the string of 
the pendulum. 

7. Conclusion 

In conclusion, the results of this investigation show that the string of a simple 
pendulum plays a significant role, and in some cases a more important role, in 
damping the pendulum than its bob. To the best of our knowledge, this effect 
has not been taken into account in the discussions of damping of pendulums in 
the literature. 
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