Prof. Mark D Shattuck Physics 35100 Mechanics January 30, 2023

Problem Set 1

From *Classical Mechanics*, R. Douglas Gregory:

Chapter 1: 1.1, 1.3, 1.14, 1.17 (optional) [1.7, 1.10-13]

Chapter 2: 2.1, 2.12 (optional) [2.6, 2.20]

Chapter 3: (optional) [3.1 3.6]

Question 1. Any triangle can be represented by three vectors $\vec{u}, \vec{v}, \vec{w}$.

- 1) Make a sketch of an example triangle with the tails of \vec{u} and \vec{v} at the same point and \vec{w} pointing from the head of \vec{v} to the head of \vec{u} .
- 2) Find an equation for \vec{w} in terms of \vec{u} and \vec{v} .
- 3) Use the equation to find a relationship between the squared lengths of $\vec{u}, \vec{v}, \vec{w}$, where the squared length of a vector is $u^2 = |\vec{u}|^2 = \vec{u} \cdot \vec{u}$. Use the relation between the dot product and angle between two vectors to recover the Law of Cosines.
- 4) Show that the area of the triangle $A = |\vec{u} \times \vec{v}|/2$. Prove the other cross products give the same result $A = |\vec{u} \times \vec{w}|/2 = |\vec{w} \times \vec{v}|/2$.

Question 2. A simple vector space is given by triples (a, b, c) where a, b, c come from the scalar field $\{0, 1, 2\}$, where the addition and multiplication tables for the field are:

+	0	1	2		*	0	1	2
0	0	1	2		0	0	0	0
1	1	2	0		1	0	1	2
2	2	0	1	-	2	0	2	1

For example, add two vectors (2, 1, 0) + (1, 2, 2) = (0, 0, 2) and multiply a vector by a scalar 2 * (1, 2, 0) = (2, 1, 0).

- 1) List all 27 possible vectors in this space.
- 2) Show that $\vec{e}_0 = (1, 0, 0)$, $\vec{e}_1 = (2, 1, 0)$, and $\vec{e}_2 = (0, 2, 1)$ are basis vectors that span the space.
- 3) What is the additive inverse for these vectors? That is find a scalar d such that (a, b, c) + d * (a, b, c) = (0, 0, 0). Often d would be -1, but -1 is not one of the scalars 0, 1, 2 available.

Question 3. A roller coaster follows the trajectory:

$$\vec{x}(t) = (vt, 0, v^2 t^2 (vt - 10 m) (vt - 18 m) / 1260 m^3),$$

for $(-5 s \le t \le 20 s)$, and v = 1 m/s. $\vec{r} = (x, y, z)$ is shorthand for $\vec{r} = x\hat{x} + y\hat{y} + z\hat{z}$.

- 1) If the height $h(t) = \vec{x}(t) \cdot \hat{z}$, then when (t) and where (x, y, h) does the coaster reach the maximum and minimum heights for $(-5 s \le t \le 20 s)$?
- 2) What is the velocity vector at t = -5 s, the maximum, and minimum heights?
- 3) What is the acceleration vector at t = -5 s, the maximum and minimum heights?
- 4) Is the total energy, kinetic plus gravitational, conserved?

Question 4. A m = 10 kg model rocket produces an upward thrust of $F(t) = 49 N/s^2(3 s - t)t$ for 3 s. At t = 0 s the rocket is sitting at rest on the launch pad. Assume $g = 9.8 m/s^2$ and that the mass of the fuel is negligible:

- 1) Draw a free body diagram of the rocket and pad at t = 0?
- 2) At what time t_{off} will the rocket leave the launch pad?
- 3) Write down a differential equation for the position of the rocket as a function of time $\vec{x}(t)$ for $0 \le t < t_{off}$.
- 4) Draw a free body diagram at $t = t_{off}$.
- 5) Write down a differential equation for $\vec{x}(t)$ for $t_{off} \leq t < 3s$ and solve for $\vec{x}(t)$. What is the height of the rocket at t = 3s?
- 6) What is the velocity at t = 3 s?
- 7) Use conservation of energy to find the maximum height that rocket reaches. For what times can we use conservation of energy?

Question 5. A m = 20 kg model rocket produces an upward thrust of $F(t) = 49 N/s^2(5 s - t)t$ for 5 s. At t = 0 s the rocket is sitting at rest on the launch pad. Assume $g = 9.8 m/s^2$ and that the mass of the fuel is negligible:

- 1) Draw a free body diagram of the rocket and pad at t = 0?
- 2) At what time t_{off} will the rocket leave the launch pad?
- 3) Write down a differential equation for the position of the rocket as a function of time $\vec{x}(t)$ for $0 \le t < t_{off}$.
- 4) Draw a free body diagram at $t = t_{off}$.
- 5) Write down a differential equation for $\vec{x}(t)$ for $t_{off} \leq t < 5 s$ and solve for $\vec{x}(t)$. What is the height of the rocket at t = 5 s?
- 6) What is the velocity at t = 5 s?
- 7) Use conservation of energy to find the maximum height that rocket reaches. For what times can we use conservation of energy?