Prof. Mark D Shattuck Physics 35100 Mechanics February 6, 2023

Problem Set 2

From *Classical Mechanics*, R. Douglas Gregory: **Chapter 4:** (optional) [4.1-3, 4.9] **Chapter 5:** 5.1, 5.5

Question 1. Two masses m_1 and m_2 are connected by a spring with spring constant K. The masses are confined to the the x-y plane and have position $\vec{x}_1(t)$ and $\vec{x}_2(t)$. The potential energy stored in the spring is:

$$V(l) = \frac{1}{2}K(l - l_0)^2,$$

where $l = \left[\vec{l} \cdot \vec{l}\right]^{\frac{1}{2}} = \left[(\vec{x}_2 - \vec{x}_1)^2\right]^{\frac{1}{2}}$ and $\vec{l} = l\hat{l} = \vec{x}_2 - \vec{x}_1$.

- (1) Make a sketch of the system with $m_1, m_1, \vec{x}_1, \vec{x}_2$ and, \vec{l} labeled.
- (2) Given two vectors $\vec{a} = (a_x, a_y)$ and $\vec{x} = (x, y)$ such that \vec{a} is a constant with respect to \vec{x} (i.e., $\frac{\partial a_x}{\partial x} = 0, \frac{\partial a_x}{\partial y} = 0, \frac{\partial a_y}{\partial x} = 0$, and $\frac{\partial a_y}{\partial y} = 0$). Show that:

$$\frac{\partial(\vec{a}\cdot\vec{a})}{\partial\vec{x}} = \left(\frac{\partial(\vec{a}\cdot\vec{a})}{\partial x}, \frac{\partial(\vec{a}\cdot\vec{a})}{\partial y}\right) = (0,0) = \vec{0}$$

(3) Given two vectors $\vec{a} = (a_x, a_y)$ and $\vec{x} = (x, y)$ such that \vec{a} is a constant with respect to \vec{x} (i.e., $\frac{\partial a_x}{\partial x} = 0, \frac{\partial a_x}{\partial y} = 0, \frac{\partial a_y}{\partial x} = 0$, and $\frac{\partial a_y}{\partial y} = 0$). Show that:

$$\frac{\partial(\vec{a}\cdot\vec{x})}{\partial\vec{x}} = \left(\frac{\partial(\vec{a}\cdot\vec{x})}{\partial x}, \frac{\partial(\vec{a}\cdot\vec{x})}{\partial y}\right) = (a_x, a_y) = \vec{a}$$

(4) Given the vector $\vec{x} = (x, y)$. Show that:

$$\frac{\partial(\vec{x}\cdot\vec{x})}{\partial\vec{x}} = \left(\frac{\partial(\vec{x}\cdot\vec{x})}{\partial x}, \frac{\partial(\vec{x}\cdot\vec{x})}{\partial y}\right) = (2x, 2y) = 2\vec{x}$$

(5) Use (2)-(4) and the chain rule to show that the vector function:

$$\frac{\partial l}{\partial \vec{x_1}} = \left(\frac{\partial l}{\partial x_1}, \frac{\partial l}{\partial y_1}\right) = -\hat{l}$$

- (6) Use (2)-(5) and the potential to find the vector force on each particle. Write down 2 vector equations using Newton's second law for the two particle, and show that the two vector forces obey Newton's third law.
- (7) Write the equation for the center of mass vector \vec{X}_{cm} and use (6) to find the acceleration of the center of mass vector $\ddot{\vec{X}}_{cm}$.
- (8) Consider the change of variables:

$$ec{X}_{cm} = rac{m_1 ec{x}_1 + m_2 ec{x}_2}{m_1 + m_2} \ ec{l} = ec{x}_2 - ec{x}_1$$

Find the inverse transformation: $\vec{x}_1 = \vec{x}_1(\vec{X}_{cm}, \vec{l})$ and $\vec{x}_2 = \vec{x}_2(\vec{X}_{cm}, \vec{l})$

- (9) Write down the total energy E using the kinetic $T(\dot{\vec{x}}_1, \dot{\vec{x}}_2)$ and potential $V(\vec{x}_1, \vec{x}_2)$, then convert to the new variables from (8), $T(\vec{X}_{cm}, \vec{l})$ and $V(\vec{X}_{cm}, \vec{l})$. These definition may be useful: Total mass, $M = m_1 + m_2$ and reduced mass, $\mu = m_1 m_2 / M$.
- (10) Use the equation for the length vector $\vec{l} = \vec{x}_2 \vec{x_1}$ and (6) to show that the acceleration of length vector is:

$$\ddot{\vec{l}} = -\frac{K}{\mu}(l-l_0)\hat{l}$$

- (11) Find $\ddot{\vec{l}} \cdot \vec{l}$ and $\ddot{\vec{l}} \times \vec{l}$ in complex polar coordinates $\vec{l} = le^{i\theta}$, where $i = \sqrt{-1}$. Where $\vec{u} \times \vec{v}$ is the 2D scalar cross product defined in terms of the ordinary 3D vector cross product $\vec{u} \times \vec{v} =$ $[(u_x\hat{x} + u_y\hat{y} + 0\hat{z}) \times (v_x\hat{x} + v_y\hat{y} + 0\hat{z})] \cdot \hat{z}$. Some useful identities:
 - For any vectors $\vec{u} = (u \cos \theta, u \sin \theta)$ and $\vec{v} = (v \cos \phi, v \sin \phi)$ represented as a complex numbers $U = ue^{i\theta}$ and $V = ve^{i\phi}$, then $U^*V = uve^{i(\phi-\theta)} = uv\cos(\phi-\theta) + iuv\sin(\phi-\theta) = \vec{u}\cdot\vec{v} + i\vec{u}\times\vec{v}$, where $U^* = ue^{-i\theta}$ is the complex conjugate of U.

 - $ue^{i\theta} = u(\cos\theta + i\sin\theta).$ $\Re(ue^{i\theta}) = \frac{1}{2}(e^{i\theta} + e^{-i\theta}) = u\cos\theta.$ $\Im(ue^{i\theta}) = \frac{1}{2i}(e^{i\theta} e^{-i\theta}) = u\sin\theta.$

For example, find $\vec{l} \cdot \vec{l}$ and $\vec{l} \times \vec{l}$:

$$\vec{l} = le^{i\theta}$$

$$\dot{\vec{l}} = le^{i\theta} + il\dot{\theta}e^{i\theta} = (l + il\dot{\theta})e^{i\theta}$$

$$\dot{\vec{l}} \cdot \vec{l} + i\vec{l} \times \vec{l} = (l - il\dot{\theta})e^{-i\theta}le^{i\theta} = (l - il\dot{\theta})l$$

$$\dot{\vec{l}} \cdot \vec{l} = ll$$

$$\dot{\vec{l}} \times \vec{l} = -l^2\dot{\theta}$$

- (12) Dot \vec{l} with both sides of (10) and use (11) to give an equation of motion for \ddot{l} in terms of l and θ .
- (13) Cross \vec{l} with both sides of (10) and use (11) to give a conserved quantity $L = \mu l^2 \dot{\theta}$. (hint: Calculate \dot{L} .) L is the angular momentum of the system and $I = \mu l^2$ is the moment of inertia, which plays the role of mass in rotational problems. Using $I, L = I\dot{\theta}$.
- (14) Show that $E = \frac{1}{2}\mu \dot{l}^2 + \frac{1}{2}\mu (l\dot{\theta})^2 + \frac{1}{2}K(l-l_0)^2$ is a conserved quantity. E is the total energy of the system.
- (15) Use $L = \mu l^2 \dot{\theta}$ to obtain a second-order non-linear differential equation of motion for l which depends only on l, \dot{l} , etc and constants (i.e., eliminate θ , $\dot{\theta}$, etc).
- (16) The equation in (15) can not be solved analytically. To get an idea of the motion, use $L = \mu l^2 \dot{\theta}$ to eliminate $\dot{\theta}$ in E and show that:

$$\dot{l} = \pm \left[\frac{2E}{\mu} - \left(\frac{L}{\mu}\right)^2 l^{-2} - \frac{K}{\mu}(l-l_0)^2\right]^{\frac{1}{2}}.$$

Show that the dimensionless equation using $[L] = l_0$, $[M] = \mu$, and $[T] = \sqrt{\mu/K}$ has the form:

$$\dot{\lambda} = \pm \left[\epsilon - \Lambda^2 \lambda^{-2} - (\lambda - 1)^2 \right]^{\frac{1}{2}}.$$

and give the values of the dimensionless energy ϵ and angular momentum Λ in terms of the energy E, angular momentum L, K, μ , and l_0 . Plot both branches of $\dot{\lambda}$ vs. λ for a few values of ϵ and Λ and explain the dynamics. Ignore any values of $\dot{\lambda}$ that are imaginary.