Prof. Mark D Shattuck
Physics 35100 Mechanics
March 14, 2023

PSet 5

From Classical Mechanics, R. Douglas Gregory:
Chapter 4: 4.14, 4.15 (use Lagrangian Mechanics)
Question 1. Double Oscillator Two blocks of mass $m_{1}=m$ and $m_{2}=\frac{2 m}{3}$ are resting at position x_{1} and x_{2} on a friction-less table. m_{1} is connected to a linear spring with spring constant $K_{1}=3 K$ and rest length $L_{1} . m_{2}$ is connected to a second linear spring with spring constant $K_{2}=K$ and rest length L_{2}. Both masses are confined to move in one dimension.

(1) Write down the Lagrangian in the Cartesian coordinates x_{1} and x_{2}.
(2) Find new generalized coordinates q_{1} and q_{2} such that all of the potential terms are of the form $V_{k}\left(q_{k}\right)=\frac{1}{2} K q_{k}^{2}$. (Hint: $x_{1}=q_{1}+L_{1}$ will work for V_{1}.) Then rewrite the Lagrangian in the new coordinates.
(3) Find the two conjugate momenta p_{1} and p_{2}.
(4) Find the equations of motion.
(5) The equations for the q_{k} are coupled making them difficult to solve. Show that a change of variables to $\dot{P}_{1}=\dot{p}_{1}+2 \dot{p}_{2}$ and $\dot{P}_{2}=-2 \dot{p}_{1}+3 \dot{p}_{2}$ will uncouple the equations. For example, $\dot{P}_{1}=\ddot{Q}_{1}=-\Omega^{2} Q_{1}$, where $Q_{1}=3 q_{1}+2 q_{2}$. Show that $Q_{1}=3 q_{1}+2 q_{2}$ and obeys $\ddot{Q}_{1}=-\Omega_{1}^{2} Q_{1}$ and find Q_{2} and Ω_{1} and Ω_{2} in terms of the base frequency $\sqrt{\frac{K}{m}}$.

Question 2. Matrix Lagrangian Find the equation of motion for the Lagrangian:

$$
L(\vec{q}, \dot{\vec{q}})=\frac{1}{2} \vec{q}^{T} \mathrm{M} \vec{q}+\frac{1}{2} \dot{\vec{q}}^{T} \mathrm{~K} \dot{\vec{q}}
$$

where,

$$
\begin{aligned}
\vec{q}^{T} & =\left[\begin{array}{ll}
\theta & \phi
\end{array}\right], \\
\mathrm{M} & =\left[\begin{array}{cc}
4 \mu & 3 \mu+\nu \\
3 \mu+\nu & \nu
\end{array}\right], \\
\mathrm{K} & =\left[\begin{array}{cc}
4 \kappa & -\kappa \\
-\kappa & \kappa
\end{array}\right] .
\end{aligned}
$$

Question 3. Conservation of Energy Consider a Lagrangian that obeys Euler-Lagrange equations. Show that the Hamiltonian will only be conserved $\dot{H}=0$ if L does not explicitly depend on time $\frac{\partial L}{\partial t}=0$. Consider a general Lagrangian $L\left(q_{k}(t), \dot{q}_{k}(t), t\right)$. (Hint: Find the total time derivative of the Lagrangian along with the Euler-Lagrange equations to relate terms to generalized momenta and their derivatives.)

