Prof. Mark D Shattuck
Physics 35100 Mechanics
March 27, 2023

Problem Set 6

From Classical Mechanics, R. Douglas Gregory:
Chapter 5: 5.1, 5.16, 5.18
Question 1. Double Oscillator Two blocks of mass $m_{1}=3 m$ and $m_{2}=2 m$ are on a friction-less table. m_{1} is connected to a linear spring with spring constant $K_{1}=3 K$ and m_{2} is connected to a second linear spring with spring constant $K_{2}=K$. Both masses are confined to move in one dimension. The masses are initially at rest at their equilibrium positions. x_{1} and x_{2} measure their displacement from the equilibrium positions.

(1) What is the Kinetic Energy of the system in terms of x_{1} and x_{2}.
(2) What is the Potential Energy of the system in terms of x_{1} and x_{2}.
(3) Show that the potential energy of the system is $2 K$ when $x_{1}=1$ and $x_{2}=0$. In this configuration, describe the state of the $3 K$ and K springs as stretched, compressed, or at equilibrium.
(4) Find the equations of motion for the system.
(5) Express the equations of motion for the system as a matrix equation of the form $M \ddot{X}=-K X$, where M and K are 2×2 matrices and X is a 2×1 matrix.
(6) Show that $\mathrm{X}(t)=\mathrm{A} \cos (\omega t+\phi)$, where A is a 2×1 matrix, is a solution to the equation $\mathrm{M} \ddot{\mathrm{X}}=-\mathrm{KX}$. What are the conditions on A, ω, and ϕ so that $\mathrm{X}(t)=\mathrm{A} \cos (\omega t+\phi)$ is a solution?
(7) Find the values of ω which satisfy $\operatorname{det}\left(K-\omega^{2} \mathbf{M}\right)=0$ or $\operatorname{det}\left(M^{-1} K-\omega^{2} \mathbf{I}\right)=0$ for the K and M found above, and \mathbf{I} is the identity matrix.
(8) For each value of ω find an A which satisfies $\left(K-\omega^{2} M\right) A=0$, or $K A=\omega^{2} M A$, or $M^{-1} K A=\omega^{2} A$.
(9) Using the A's and ω 's from above:
(a) Find the general solution for $\mathrm{X}(t)$.
(b) Show that in matrix form it can be expressed as:

$$
\mathrm{X}(t)=\left[\begin{array}{cc}
-2 & 1 \\
1 & 3
\end{array}\right]\left[\begin{array}{l}
C_{1} \cos \left(\sqrt{\frac{3}{2}} \omega_{0} t+\phi_{1}\right) \\
C_{2} \cos \left(\sqrt{\frac{1}{3}} \omega_{0} t+\phi_{2}\right)
\end{array}\right]
$$

where C_{1} and C_{2} are constants.
(c) Show that it is a solution to the equations of motion.
(10) Show that the change of variables:

$$
\mathbf{Y}(t)=\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t)
\end{array}\right]_{1}=\left[\begin{array}{cc}
-2 & 1 \\
1 & 3
\end{array}\right]^{-1} \mathbf{X}(t)
$$

decouples the solution so that $y_{1}(t)$ and $y_{2}(t)$ oscillate independently, each with their own frequency and phase. Describe the motion when $C_{1}=1$ and $C_{2}=0$ and when $C_{1}=0$ and $C_{2}=1$.
(11) Find C_{1} and C_{2} for the initial condition of $\mathrm{X}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ and $\dot{\mathrm{X}}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$. Explain in words what this initial condition represents.

Question 2. Bouncy pendulum A simple pendulum of mass M and length l is hanging from a block with mass m that can oscillate at the end of a spring with spring constant k. The block is confined to move only in the vertical direction by two frictionless rails. y measures the vertical displacement of the block from equilibrium, and θ measures the angle of the pendulum from equilibrium.

(1) Find the Lagrangian $L(y, \theta, \dot{y}, \dot{\theta})$ under the assumption that the angle θ is small, so that $\sin \theta \simeq \theta$ and $\cos \theta \simeq 1-\theta^{2} / 2$. and only retain quadratic terms in $y, \theta, \dot{y}, \dot{\theta}$. (e.g., $y \theta$ is relevant, but $y \dot{\theta}$ is too small. and can be ignored.)
(2) Find the equations of motion. Find the normal modes and corresponding frequencies for the case $m=M=l=1, g=2$ and $k=3$, and describe the normal modes.

Useful Equations

(1) Lagrangian in Cartesian coordinate $\left[\vec{x}_{1} \ldots \vec{x}_{N}\right]$:

$$
L=T-V=\frac{1}{2} \sum_{n=1}^{N} m_{n} \dot{\vec{x}}_{n}^{2}-V\left(\vec{x}_{1} \ldots \vec{x}_{N}\right)
$$

(2) Generalized coordinates: $\vec{x}_{n}=\vec{X}_{n}\left(q_{1} \ldots q_{K}\right) . K$ may be less than N if there are constraints.

$$
L\left(q_{k}, \dot{q}_{k}\right)=\frac{1}{2} \sum_{n=1}^{N} m_{n} \dot{\vec{X}}_{n}\left(q_{1} \ldots q_{K}\right)^{2}-V\left(\vec{X}_{1} \ldots \vec{X}_{N}\right)
$$

where

$$
\dot{\vec{X}}_{n}\left(q_{1} \ldots q_{K}\right)^{2}=\left[\frac{d \vec{X}_{n}\left(q_{1} \ldots q_{K}\right)}{d t}\right]^{2}=\left[\sum_{k=1}^{K} \frac{d \vec{X}_{n}\left(q_{1} \ldots q_{K}\right)}{d q_{k}} \frac{d q_{k}}{d t}\right]^{2}=\left[\sum_{k=1}^{K} \frac{d \vec{X}_{n}\left(q_{1} \ldots q_{K}\right)}{d q_{k}} \dot{q}_{k}\right]^{2}
$$

(3) Generalized momentum:

$$
p_{k}=\frac{\partial L\left(q_{k}, \dot{q}_{k}\right)}{\partial \dot{q}_{k}} .
$$

(4) Euler-Lagrange equation of motion:

$$
\dot{p}_{k}=\frac{\partial L\left(q_{k}, \dot{q}_{k}\right)}{\partial q_{k}} .
$$

(5) General form of 2 D coupled harmonic oscillators:

$$
\begin{aligned}
{\left[\begin{array}{ll}
M_{1} & M_{2} \\
M_{2} & M_{3}
\end{array}\right]\left[\begin{array}{l}
\ddot{q_{1}} \\
q_{2}
\end{array}\right] } & =-\left[\begin{array}{ll}
K_{1} & K_{2} \\
K_{2} & K_{3}
\end{array}\right]\left[\begin{array}{l}
q_{1} \\
q_{2}
\end{array}\right], \\
\mathrm{M} \dot{\mathrm{Q}} & =-\mathrm{KQ},
\end{aligned}
$$

with general solution:

$$
\begin{aligned}
& {\left[\begin{array}{l}
q_{1} \\
q_{2}
\end{array}\right]=\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right] \cos (\omega t+\phi),} \\
& \mathrm{Q}(t)=\mathrm{A} \cos (\omega t+\phi)
\end{aligned}
$$

Plugging the solution into the equation motion gives this constraint on ω and A :

$$
\left(K-\omega^{2} M\right) A=0,
$$

Eigenvalues ω_{k}^{2} solve this equations:

$$
\operatorname{det}\left(\mathrm{K}-\omega_{k}^{2} \mathrm{M}\right)=0,
$$

Eigenvectors A_{k} solve this equations:

$$
\left(\mathrm{K}-\omega_{k}^{2} \mathrm{M}\right) \mathrm{A}=0
$$

The full solution is:

$$
\mathrm{Q}(t)=\sum_{k} C_{k} \mathrm{~A}_{k} \cos \left(\omega_{k} t+\phi_{k}\right),
$$

where C_{k} and ϕ_{k} are determined by the initial conditions.

