Prof. Mark D Shattuck Physics 35100 Mechanics May 1, 2023

Problem Set 6

Question 1. General Two-Body Central-Force Problem The general two-body central force Lagrangian for particle 1, mass, m_1 , and position $\vec{r_1}$ and particle 2, mass, m_2 , and position $\vec{r_2}$ is

$$L = \frac{1}{2}m_1\dot{\vec{r}}_1^2 + \frac{1}{2}m_2\dot{\vec{r}}_2^2 - V(\vec{r}_2 - \vec{r}_1),$$

where $V(\vec{r}_2 - \vec{r}_1)$ is a general central force potential.

(1) Show that the Lagrangian can be separated into a center of mass \vec{R} part and a particle separation part \vec{r} :

$$L = L_{CM} + L_s$$

= $\frac{1}{2}M\dot{\vec{R}}^2 + \frac{1}{2}\mu\dot{\vec{r}}^2 - V(\vec{r})$

where $M\vec{R} = m_1\vec{r_1} + m_2\vec{r_2}$, $M = m_1 + m_2$, $\mu = m_1m_2/M$ and $\vec{r} = \vec{r_2} - \vec{r_1}$. (a) First show that

$$\vec{r}_1 = \vec{R} - \frac{m_2}{M}\vec{r}$$
 and $\vec{r}_2 = \vec{R} + \frac{m_1}{M}\vec{r}$.

(b) Then plug $\vec{r_1}$ and $\vec{r_2}$ in to L.

(2) Show that the equation of motion for \vec{R} and \vec{r} are

$$M\vec{R}=0$$

$$\mu\ddot{\vec{R}}=-\vec{\nabla}V(\vec{r}),$$

where

$$\vec{\nabla}V(\vec{r}) = \frac{\partial V}{\partial \vec{r}} = \frac{\partial V(x, y, z)}{\partial x}\hat{x} + \frac{\partial V(x, y, z)}{\partial y}\hat{y} + \frac{\partial V(x, y, z)}{\partial z}\hat{z}$$

and $\vec{r} = x\hat{x} + y\hat{y} + z\hat{z}$

Question 2. Hooke's Law in Space Two masses m_1 and m_2 at positions $\vec{r_1}$ and $\vec{r_2}$ interact via Hooke's law so that their potential $V = 1/2K\vec{r}^2$, where $\vec{r} = \vec{r_2} - \vec{r_1}$.

- (1) Use the general central force equation $\mu \ddot{\vec{r}} = -\vec{\nabla}V$ to find the equations of motion for \vec{r} .
- (2) Show that the general solution is:

$$\vec{r}(t) = \vec{X}_0 \cos(\omega t) + \frac{\vec{V}_0}{\omega} \sin(\omega t)$$

Find the value of ω in terms of other parameters in the problem and explain the meaning of the constant vectors \vec{X}_0 and \vec{V}_0 .

(3) Show that in general the solution $\vec{r}(t)$ lies in a plane for all times t. (Hint: if $\vec{r}(t)$ is always in a plane then there will be a vector \vec{n} which is perpendicular to that plane such that $\vec{r}(t) \cdot \vec{n} = 0$ for all t. Further both \vec{X}_0 and \vec{V}_0 define the plane that \vec{r} is in.)

(4) Since the solution is in a plane we can always choose that plane to be the x-y plane so that $\vec{r} = x\hat{x} + y\hat{y} + 0\hat{z}$. In this plane, show that the solution orbit is of this form:

$$\vec{r}^T \mathsf{A} \vec{r} = C$$
$$\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} a & b \\ b & c \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = ax^2 + 2bxy + cy^2 = C$$

This is a general quartic equation. Find A and C and show that det A > 0 and a > 0 and c > 0 so that the orbit is an ellipse. Hints:

- (a) Solve for $\sin(\omega_0 t)$ and $\cos(\omega_0 t)$ and use the fact that $\sin^2 + \cos^2 = 1$.
- (b) Notice that:

$$(\omega_0 \vec{X}_0 \times \vec{r})^2 = [(\vec{X}_0 \times \vec{X}_0) \omega_0^0 \cos(\omega_0 t) + (\vec{X}_0 \times \vec{V}_0) \sin(\omega_0 t)]^2$$
$$\omega_0^2 (x_0 y - y_0 x)^2 = (\vec{X}_0 \times \vec{V}_0)^2 \sin^2(\omega_0 t) = (x_0 v_0 - y_0 u_0)^2 \sin^2(\omega_0 t)$$

where $\vec{X}_0 = x_0 \hat{x} + y_0 \hat{y}$ and $\vec{V}_0 = u_0 \hat{x} + v_0 \hat{y}$ (c) There is a similar equation for $\cos^2(\omega_0 t)$.

(c) There is a similar equation for $\cos(\omega_0 t)$.

Question 3. Satellite Orbit A satellites obits the earth. At the point furthest from the earth it is a distance of 300 km above the surface of the earth and has speed of 7.69 km/s.

- (1) Find the eccentricity ϵ of the orbit. Use $R_E = 6400 \ km$ for the radius of the earth. (note: $GM_E/R_E^2 = g$, where G is the gravitational constant, M_E is the mass of the earth, and $g = 9.8 \ m/s^2$ is the value of gravity at the earth's surface.)
- (2) Find the minimum distant above the earth and the speed at that point.

Question 4. Connected Masses 5 masses, which are connected by ridid mass-less rods to form a rigid structure are at the following positions:

Label	Mass	Position
1	2m	(0, 0, 0)
2	2m	(2l, 0, 0)
3	2m	(0, 2l, 0)
4	2m	(0, 0, 2l)
5	m	(2l, 2l, 2l)

- (1) Without the connecting rods how many degrees of freedom are in the system of 5 masses in 3dimensions?
- (2) How many rod would be needed to connect every possible pair of particles together? (i.e., 1 to 2, 1 to 3, 1 to 4, 1 to 5, 2 to 3, etc.)
- (3) If all pairs of the mass are connected by rigid rods, how many degrees of freedom would be left?
- (4) What is the minimum number of rods needed to turn the 5 masses into a rigid structure? Give an example connection set. (i.e., 1-2, 2-5, 5-3, etc.) (note: a rod can connect any two particles together so that the distance between them is fixed. For example a rod between particle 1 and 2 would be 2l long.)
- (5) Find the total mass and the center of mass. How many degrees of freedom does the center of mass represent?
- (6) Find the moment of inertia matrix for rotation about the origin. How many degrees of freedom does the moment of inertia matrix represent?

- (7) Find the principle axes and the principle moments. Show that the angular momentum vector and the rotational velocity vector are in the same direction for a rotational velocity vector pointing in the direction of one of the principle axes.
- (8) Find angular momentum vector for a rotation velocity of $\vec{\omega} = (3\omega_0, 2\omega_0, 4\omega_0)$. Are the angular momentum vector and the rotation velocity vector pointing in the same direction?
- (9) Find kinetic energy for a rotation velocity of $\vec{\omega} = (3\omega_0, 2\omega_0, 4\omega_0)$.

Question 5. Moment of Inertia Find the moment of inertia matrix of an $a \times a \times b$ solid cuboid of mass M about the origin. The 4 corners of the $a \times a$ face are in the z = 0 xy-plane at the points (0, a/2, 0), (0, -a/2, 0), (a, a/2, 0), (a, -a/2, 0). The other four corners are a the points (0, a/2, b), (0, -a/2, b), (a, -a/2, b).