Parameters for Double Pendulum Model

Let us number the two pivots of the double pendulum 1 for the pivot that is stationary and 2 for the pivot that can move. Likewise, number the two rectangular pieces 1 for the piece attached to both pivots and 2 for the piece attached only to pivot 2 . We can model the double pendulum, ignoring friction, with the following parameters:

- ℓ : distance between the two pivots
- m_{1}, m_{2} : masses of the two rotating pieces
- r_{1}, r_{2} : for each piece, distance from its pivot to its center of mass
- I_{1}, I_{2} : moment of inertia for each piece about its pivot

We will replace all but ℓ with the following dimensionless parameters, where k can be 1 or 2 :

- $\rho=m_{2} / m_{1}$: mass ratio
- $\alpha_{k}=r_{k} / \ell$: relative distance to center of mass
- $\beta_{k}=I_{k} /\left(m_{k} \ell^{2}\right)$: moment of inertia normalized by the moment of a point mass at distance ℓ These five parameters, along with the ratio g / ℓ, where g is gravitational acceleration, are used in our model implementation. The model is thus nondimensionalized, except for the time unit.

Model Equations

The state variables for the model are $\theta_{1}, \theta_{2}, p_{1}, p_{2}$, where θ_{k} is the angle of piece k from the downward vertical, and p_{k} is a generalized momentum.

$$
\begin{aligned}
\dot{\theta}_{1} & =\frac{\rho \beta_{2} p_{1}-\rho \alpha_{2} \cos \left(\theta_{1}-\theta_{2}\right) p_{2}}{\left(\beta_{1}+\rho\right) \rho \beta_{2}-\rho^{2} \alpha_{2}^{2} \cos ^{2}\left(\theta_{1}-\theta_{2}\right)} \\
\dot{\theta}_{2} & =\frac{\left(\beta_{1}+\rho\right) p_{2}-\rho \alpha_{2} \cos \left(\theta_{1}-\theta_{2}\right) p_{1}}{\left(\beta_{1}+\rho\right) \rho \beta_{2}-\rho^{2} \alpha_{2}^{2} \cos ^{2}\left(\theta_{1}-\theta_{2}\right)} \\
\dot{p}_{1} & =-\frac{g}{\ell}\left(\alpha_{1}+\rho\right) \sin \theta_{1}-\rho \alpha_{2} \sin \left(\theta_{1}-\theta_{2}\right) \dot{\theta}_{1} \dot{\theta}_{2} \\
\dot{p}_{2} & =-\frac{g}{\ell} \rho \alpha_{2} \sin \theta_{2}+\rho \alpha_{2} \sin \left(\theta_{1}-\theta_{2}\right) \dot{\theta}_{1} \dot{\theta}_{2}
\end{aligned}
$$

The model derivation is based on:
http://instructor.physics.lsa.umich.edu/advlabs/Chaotic
Double Pendulum/Pendulum_2010_04_12.pdf

